Сложение и вычитание десятичных дробей примеры. Дроби. Сложение десятичных дробей

Как и сложение, вычитание десятичных дробей зависит от правильной записи чисел.

Правило вычитания десятичных дробей

1) ЗАПЯТАЯ ПОД ЗАПЯТОЙ!

Эта часть правила самая важная. При вычитании десятичных дробей их следует записать так, чтобы запятые уменьшаемого и вычитаемого находились строго одна под другой.

2) Уравниваем количество цифр после запятой. Для этого в том числе, где количество цифр после запятой меньше, дописываем после запятой в конце нули.

3) Вычитаем числа, не обращая внимания на запятую.

4) Сносим запятую под запятыми.

Примеры на вычитание десятичных дробей .

Чтобы найти разность десятичных дробей 9,7 и 3,5, запишем их так, чтобы запятые в обоих числах находились строго одна под другой. Затем вычитаем, не обращая внимания на запятую. В полученном результате запятую сносим, то есть записываем под запятыми уменьшаемого и вычитаемого:

2) 23,45 — 1,5

Чтобы из одной десятичной дроби вычесть другую, надо записать их так, чтобы запятые располагались точно одна под другой. Так как у 23,45 после запятой две цифры, а у 1,5 — только одна, дописываем в 1,5 нуль. После этого ведем вычитания, не обращая внимания на запятую. В результат сносим запятую под запятыми:

23,45 — 1,5=21,95.

Вычитание десятичных дробей начинаем с их записи так, чтобы запятые были расположены ровно одна под одной. В первом числе после запятой одна цифра, во втором — три, поэтому на место недостающих двух цифр в первом числе записываем нули. Затем вычитаем числа, не обращая внимания на запятую. В полученном результате сносим запятую под запятыми:

63,5-8,921=54,579.

4) 2,8703 — 0,507

Чтобы вычесть эти десятичные дроби, записываем их так, чтобы запятая второго числа расположилась точно под запятой первого. В первом числе после запятой четыре цифры, во втором — три, поэтому второе число дополняем после запятой нулем в конце. После этого вычитаем эти числа, как обычные натуральные, не учитывая запятую. В полученном результате записываем запятую под запятыми:

2,8703 — 0,507 = 2,3663.

5) 35,46 — 7,372

Вычитание десятичных дробей начинаем с записи чисел таким образом, чтобы запятые находились одна под другой. Дополняем нулем после запятой первое число, чтобы в обоих дробях после запятой было по три цифры. Затем вычитаем, не обращая внимания на запятую. В ответе сносим запятую под запятыми:

35,46 — 7,372 = 28,088.

Чтобы из натурального числа вычесть десятичную дробь, в его записи в конце ставим запятую и приписываем необходимое количество нулей после запятой. Зачем вычитаем, не беря во внимание запятую. В ответ сносим запятую ровно под запятыми:

45 — 7,303 = 37,698.

7) 17,256 — 4,756

Этот пример на вычитание десятичных дробей выполняем аналогично. В результате получили число с нулями после запятой в конце. Их в ответе не пишем: 17,256 — 4,756 =12,5.

Сложение десятичных дробей производится по правилам сложения в столбик.

Десятичные дроби складываются в столбик, как и натуральные числа, не обращая внимания на запятые.

В итоговом результате запятая ставится под запятыми как в исходных дробях .

Обратите внимание! Если в начальных десятичных дробях различное число знаков (цифр) после запятой, то к дроби, в которой меньше число десятичных знаков нужно дописать нужное количество нулей, чтобы уравнять в дробях число знаков после запятой.

Если справа от слагаемого или уменьшаемого не хватает разрядов дробной части, то справа в дробной части можно дописывать столько нулей (увеличивать разрядность дробной части), сколько разрядов в другом слагаемом или уменьшаемом.

Рассмотрим пример. Определяем сумму десятичных дробей:

0,678 + 13,7 =

Уравниваем число знаков после запятой в десятичных дробях. Дописываем 2 ноля справа к десятичной дроби 13,7 :

0,678 + 13,700 =

Записываем ответ:

0,678 + 13,7 = 14,378

Основные правила сложения десятичных дробей:

  • Уравнять число знаков после запятой.
  • Записать десятичные дроби друг под другом таким образом, чтоб запятые были друг под другом.
  • Выполнить сложение десятичных дробей, не обращая внимания на запятые, по правилам сложения в столбик натуральных чисел.
  • Поставить в ответ запятую под запятыми.

В письменном сложении и вычитании десятичных дробей запятая, которая отделяет целую часть от дробной, должна располагаться у слагаемых и суммы в одном столбике (запятая под запятой от записи условия до конца вычисления).

Например. Сложение десятичных дробей в строку:

243,625 + 24,026 = 200 + 40 + 3 + 0,6 + 0,02 + 0,005 + 20 + 4 + 0,02 + 0,006 = 200 + (40 + 20) + (3 + 4)+ 0,6 + (0,02 + 0,02) + (0,005 + 0,006) = 200 + 60 + 7 + 0,6 + 0,04 + 0,011 = 200 + 60 + 7 + 0,6 + (0,04 + 0,01) + 0,001 = 200 + 60 + 7 + 0,6 + 0,05 + 0,001 = 267,651.

Такие арифметические вычислительные действия, как сложение и вычитание десятичных дробей , необходимы для того, чтобы, оперируя дробными числами получать искомый результат. Особая важность проведения этих операций состоит в том, что во многих сферах деятельности человека меры многих сущностей представлены именно десятичными дробями . Поэтому для осуществления определенных действий со многими предметами материального мира требуется складывать или вычитать именно десятичные дроби . Следует заметить, что на практике эти операции используются практически повсеместно.

Процедуры сложения и вычитания десятичных дробей по своей математической сути осуществляется практически точно так же, как аналогичные операции для целых чисел. При ее осуществлении значение каждого разряда одного числа нужно записывать под значением аналогичного разряда другого числа.

Подчиняется следующим правилам:

Сначала необходимо произвести уравнивание количество тех знаков, что располагаются после запятой;

Затем нужно произвести запись десятичных дробей друг под другом таким образом, чтобы содержащиеся в них запятые располагались строго друг под другом;

Осуществить процедуру вычитания десятичных дробей в полном соответствии с теми правилами, которые действуют для вычитания целых чисел. При этом не нужно обращать никакого внимания на запятые;

После получения ответа запятую в нем нужно поставить строго под теми, которые имеются в исходных числах.

Операция сложения десятичных дробей осуществляется в соответствии с теми же правилами и алгоритмом, которые описаны выше для процедуры вычитания.

Пример сложения десятичных дробей

Две целых две десятых плюс одна сотая плюс четырнадцать целых девяносто пять сотых равняется семнадцать целых шестнадцать сотых.

2,2 + 0,01 + 14,95 = 17,16

Примеры сложения и вычитания десятичных дробей

Математические операции сложения и вычитания десятичных дробей на практике используются чрезвычайно широко, причем они нередко касаются многих предметов окружающего нас материального мира. Ниже приводится несколько примеров таких вычислений.

Пример 1

Согласно проектно-сметной документации, для строительства небольшого производственного объекта требуется десять целых пять десятых кубометров бетона. Используя современные технологии возведения зданий, подрядчикам без ущерба для качественных характеристик сооружения удалось использовать для проведения всех работ всего девять целых девять десятых кубометров бетона. Размер экономии составляет:

Десять целых пять десятых минус девять целых девять десятых равно ноль целых шесть десятых кубометра бетона.

10,5 – 9,9 = 0,6 м 3

Пример 2

Двигатель, устанавливаемый на старую модель автомобиля, потребляет в городском цикле восемь целых две десятых литра топлива на сто километров пробега. Для нового силового агрегата этот показатель составляет семь целых пять десятых литров. Размер экономии составляет:

Восемь целых две десятых литра минус семь целых пять десятых литра равно ноль целых семь десятых литра на сто километров пробега в городском режиме движения.

8,2 – 7,5 = 0,7л

Операции сложения и вычитания десятичных дробей применяются чрезвычайно широко, и их осуществление не составляет никаких проблем. В современной математике эти процедуры отработаны практически идеально, и ими практически все хорошо владеют еще со школьной скамьи.

Является сложение десятичных дробей . В этой статье мы рассмотрим правила сложения конечных десятичных дробей, на примерах разберем, как проводится сложение конечных десятичных дробей столбиком, а также остановимся на принципах сложения бесконечных периодических и непериодических десятичных дробей. В заключение остановимся на сложении десятичных дробей с натуральными числами, обыкновенными дробями и смешанными числами.

Отметим, что в этой статье мы будем говорить лишь о сложении положительных десятичных дробей (смотрите положительные и отрицательные числа). Остальные варианты покрываются материалом статей сложение рациональных чисел и сложение действительных чисел .

Навигация по странице.

Общие принципы сложения десятичных дробей

Пример.

Выполните сложение десятичной дроби 0,43 и десятичной дроби 3,7 .

Решение.

Десятичной дроби 0,43 соответствует обыкновенная дробь 43/100 , а десятичной дроби 3,7 – обыкновенная дробь 37/10 (при необходимости смотрите перевод конечных десятичных дробей в обыкновенные). Таким образом, 0,43+3,7=43/100+37/10 .

На этом сложение конечных десятичных дробей завершено.

Ответ:

4,13 .

Теперь добавим к рассмотрению периодические десятичные дроби.

Пример.

Сложите конечную десятичную дробь 0,2 с периодической десятичной дробью 0,(45) .

Решение.

Тогда .

Ответ:

0,2+0,(45)=0,65(45) .

Теперь остановимся на принципе сложения бесконечных непериодических десятичных дробей.

Напомним, что бесконечные непериодические десятичные дроби в отличие от конечных и периодических десятичных дробей не могут быть представлены в виде обыкновенных дробей (они представляют иррациональные числа), поэтому сложение бесконечных непериодических дробей не может быть сведено к сложению обыкновенных дробей.

При выполнении сложения бесконечных непериодических дробей их заменяют приближенными значениями, то есть, предварительно проводят их округление (смотрите округление чисел ) до некоторого разряда. Повышая точность, с которой берутся приближенные значения исходных бесконечных непериодических десятичных дробей, получается более точное значение результата сложения. Таким образом, сложение бесконечных непериодических десятичных дробей сводится к сложению конечных десятичных дробей.

Рассмотрим решение примера.

Пример.

Проведите сложение бесконечных непериодических десятичных дробей 4,358… и 11,11002244… .

Решение.

Округлим складываемые десятичные дроби до сотых (до тысячных мы уже не сможем округлить дробь 4,358… , так как значение разряда десятитысячных неизвестно), имеем 4,358…≈4,36 и 11,11002244…≈11,11 . Теперь осталось сложить конечные десятичные дроби: .

Ответ:

4,358…+11,11002244…≈15,47 .

В заключение этого пункта скажем, что для сложения положительных десятичных дробей характерны все свойства сложения натуральных чисел . То есть, сочетательное свойство сложения позволяет однозначно определить сложение трех и большего количества десятичных дробей, а переместительное свойство сложения позволяет переставлять складываемые десятичные дроби местами.

Сложение десятичных дробей столбиком

Достаточно удобно выполнять сложение конечных десятичных дробей столбиком. Этот способ позволяет обойтись без перевода складываемых десятичных дробей в обыкновенные дроби.

Чтобы выполнить сложение десятичных дробей столбиком , надо:

  • записать одну дробь под другой так, чтобы одинаковые разряды оказались друг под другом, а запятая под запятой (для удобства можно уравнять количество десятичных знаков, приписав к одной из дробей справа некоторое количество нулей);
  • дальше, не обращая внимания на запятые, выполнить сложение так, как выполняется сложение столбиком натуральных чисел ;
  • в полученной сумме поставить десятичную запятую так, чтобы она находилась под десятичными запятыми слагаемых.

Для ясности рассмотрим пример сложения десятичных дробей столбиком.

Пример.

Проведите сложение десятичных дробей 30,265 и 1 055,02597 .

Решение.

Выполним сложение десятичных дробей столбиком.

Для начала уравняем количество десятичных знаков в складываемых дробях. Для этого нужно дописать два нуля справа в дроби 30,265 , при этом получится равная ей дробь 30,26500 .

Теперь записываем дроби 30,26500 и 1 055,02597 в столбик, чтобы соответствующие разряды были друг под другом:

Выполняем сложение по правилам сложения в столбик, не обращая внимания на запятые:

Осталось лишь поставить десятичную запятую в полученном числе, после чего сложение десятичных дробей столбиком принимает законченный вид:

Ответ:

30,26500+1 055,02597=1 085,29097 .

Сложение десятичных дробей с натуральными числами

Сразу озвучим правило сложения десятичных дробей с натуральными числами : чтобы сложить десятичную дробь и натуральное число нужно данное натуральное число прибавить к целой части десятичной дроби, а дробную часть оставить прежней. Это правило относится как к конечным десятичным дробям, так и к бесконечным.

Разберем пример применения этого правила.

Пример.

Вычислите сумму десятичной дроби 6,36 и натурального числа 48 .

Решение.

Целая часть десятичной дроби 6,36 равна 6 , если к ней прибавить натуральное число 48 , то мы получим число 54 . Таким образом, 6,36+48=54,36 .

Ответ:

6,36+48=54,36 .

Сложение десятичных дробей с обыкновенными дробями и смешанными числами

Сложение конечных десятичной дроби или бесконечной периодической десятичной дроби с обыкновенной дробью или смешанным числом можно свести к сложению обыкновенных дробей или сложению обыкновенной дроби и смешанного числа. Для этого десятичную дробь достаточно заменить равной ей обыкновенной дробью.

Пример.

Выполните сложение десятичной дроби 0,45 и обыкновенной дроби 3/8 .

Решение.

Заменим десятичную дробь 0,45 обыкновенной дробью: . После этого сложение десятичной дроби 0,45 и обыкновенной дроби 3/8 сводится к сложению обыкновенных дробей 9/20 и 3/8 . Закончим вычисления: . При надобности полученную обыкновенную дробь можно перевести в десятичную.