Решить уравнение методом обратной матрицы в эксель. Решение систем линейных алгебраических уравнений в Excel. Реализация метода прогонки средствами приложения Excel

Краткая теория из курса алгебры:

Пусть дана система линейных уравнений (1). Матричный способ решения систем линейных уравнений используется в тех случаях, когда число уравнений равно числу переменных.

Введем обозначения. Пусть А – матрица коэффициентов при переменных, B – вектор свободных членов, X – вектор значений переменных. Тогда X = A -1 × B , где А -1 – матрица, обратная А . Причем обратная матрица А -1 существует, если определитель матрицы А не равен 0. Произведение исходной матрицы А и обратной А -1 должно быть равно единичной матрице:

А -1 А=АА -1 =Е.

Задание : Решить систему линейных уравнений:

Технология работы:

Пусть на диапазоне А11:С13, задана исходная матрица А, составленная из коэффициентов системы. Сначала найдите определитель матрицы А. Для этого в ячейке F15 необходимо вызвать Мастер функций , В категории "Ссылки и массивы " найдите функцию МОПРЕД() , задайте ее аргумент A11:С13. Получили результат 344. Так как определитель исходной матрицы А не равен 0, т.е. существует обратная ей матрица, поэтому следующим этапом и будет нахождение обратной матрицы. Для этого выделите диапазон А15:С17, где будет размещаться обратная матрица. Вызвав Мастера функций , в категории "Ссылки и массивы " найдите функцию МОБР( ), задайте ее аргумент A11:С13 и нажмите Shift+Ctrl+Enter. Чтобы проверить правильность обратной матрицы, умножьте ее на исходную с помощью функции МУМНОЖ() . Вызовите эту функцию, предварительно выделив диапазон А19:А21. В качестве аргументов укажите исходную матрицу А, т.е. диапазон А11:С13 и обратную матрицу, т.е. диапазон А15:С17 и нажмите Shift+Ctrl+Enter. Получили единичную матрицу. Таким образом, обратная матрица найдена верно. Теперь для нахождения результата, выделите для него диапазон F18:F20. Вызовите функцию МУМНОЖ() , используя Мастера функций , укажите два массива-диапазона, которые будете перемножать − обратную матрицу и столбец свободных членов, т.е. А15:С17 и Е11:Е13 и нажмите Shift+Ctrl+Enter. Результат показан на рисунке 6.

Теперь можно произвести проверку правильности найденных решений х 1 , х 2 и х 3 . Для этого, выполните вычисление каждого уравнения, используя найденные значения х 1 , х 2 и х 3 . Например, в ячейке G11 подсчитайте значение , при этом результат должен быть равен 3. Введем следующую формулу =A11*$F$18+B11*$F$19+C11*$F$20 . Скопируйте эту формулу в две ячейки, расположенные ниже, т.е. в G12 и G13. Снова получите столбец свободных членов. Таким образом, решение системы линейных уравнений выполнено верно (рис.80).

Рисунок 80 - Решение системы линейных уравнений

Варианты индивидуальных заданий


Задание № 1. Средствами Microsoft Excel вычислить значение выражения:

Таблица 16 – Индивидуальные варианты лабораторной работы

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

онлайн-калькулятором , решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где
-

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:



Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы - (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

К началу страницы

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных - буквы. За примерами далеко ходить не надо.

Следующий пример - на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

В этой статье мы расскажем, как использовать формулы для решения систем линейных уравнений.

Вот пример системы линейных уравнений:
3x + 4y = 8
4x + 8y = 1

Решение состоит в нахождении таких значений х и у , которые удовлетворяют обоим уравнениям. Эта система уравнений имеет одно решение:
x = 7,5
y = -3,625

Количество переменных в системе уравнений должно быть равно количеству уравнений. Предыдущий пример использует два уравнения с двумя переменными. Три уравнения требуются для того, чтобы найти значения трех переменных (х ,у и z ). Общие действия по решению систем уравнений следующие (рис. 128.1).

  1. Выразите уравнения в стандартной форме. Если это необходимо, используйте основы алгебры и перепишите уравнение так, чтобы все переменные отображались по левую сторону от знака равенства. Следующие два уравнения идентичны, но второе приведено в стандартном виде:
    3x - 8 = -4y
    3x + 4y = 8 .
  2. Разместите коэффициенты в диапазоне ячеек размером n x n , где n представляет собой количество уравнений. На рис. 128.1 коэффициенты находятся в диапазоне I2:J3 .
  3. Разместите константы (числа с правой стороны от знака равенства) в вертикальном диапазоне ячеек. На рис. 128.1 константы находятся в диапазоне L2:L3 .
  4. Используйте массив формул для расчета обратной матрицы коэффициентов. На рис. 128.1 следующая формула массива введена в диапазон I6:J7 (не забудьте нажать Ctrl+Shift+Enter , чтобы ввести формулу массива): =МОБР(I2:J3) .
  5. Используйте формулу массива для умножения обратной матрицы коэффициентов на матрицу констант. На рис. 128.1 следующая формула массива введена в диапазон J10:JJ11 , который содержит решение (x = 7,5 и у = -3,625): =МУМНОЖ(I6:J7;L2:L3) . На рис. 128.2 показан лист, настроенный для решения системы из трех уравнений.

Решение систем линейных алгебраических уравнений в Excel Методы решения систем линейных алгебраических уравнений хорошо описаны в учебнике "Основы вычислительной математики. Демидович Б.П., Марон И.А. 1966". Скачать - 11Мб

1. Метод обратной матрицы (решение в Excel)

Если дано уравнение:
A*X = B, где A - квадратная матрица, X,B - вектора;
причем B - известный вектор (т е столбец чисел), X - неизвестный вектор,
то решение X можно записать в виде:
X = A -1 *B, где A -1 - обратная от А матрица.
В MS Excel обратная матрица вычисляется функцией МОБР(), а перемножаются матрицы (или матрица на вектор) - функцией МУМНОЖ().

Имеются "тонкости" использования этих матричных действий в Excel. Так, чтобы вычислить обратную матрицу от матрицы А, нужно:

1. Мышкой выделить квадратную область клеток, где будет размещена обратная матрица. 2. Начать вписывать формулу =МОБР(3. Выделить мышкой матрицу А. При этом правее скобки впишется соответствующий диапазон клеток. 4. Закрыть скобку, нажать комбинацию клавиш: Ctrl-Shift-Enter 5. Должна вычислиться обратная матрица и заполнить предназначенную для неё область Чтобы умножить матрицу на вектор: 1. Мышкой выделить область клеток, где будет размещён результат умножения 2. Начать вписывать формулу =МУМНОЖ(3. Выделить мышкой матрицу - первый сомножитель. При этом правее скобки впишется соответствующий диапазон клеток. 4. С клавиатуры ввести разделитель; (точка с запятой) 5. Выделить мышкой вектор- второй сомножитель. При этом правее скобки впишется соответствующий диапазон клеток. 6. Закрыть скобку, нажать комбинацию клавиш: Ctrl-Shift-Enter 7. Должно вычислиться произведение и заполнить предназначенную для него область Есть и другой спососб, при котором используется кнопка построителя функции Excel. Пример СЛАУ 4-го порядка

Скачать документ Excel, в котором этот пример решён различными методами.

2. Метод Гаусса

Метод Гаусса подробно (по шагам) выполняется только в учебных целях, когда нужно показать, что Вы это умеете. А чтобы решить реальную СЛАУ, лучше применить в Excel метод обратной матрицы или воспользоваться специальными программами, например, этой

Краткое описание.

3. Метод Якоби (метод простых итераций)

Для применения метода Якоби (и метода Зейделя) необходимо, чтобы диагональные компоненты матрицы А были больше суммы остальных компонент той же строки. Заданная система не обладает таким свойством, поэтому выполняю предварительные преобразования.

(1)’ = (1) + 0,43*(2) - 0,18*(3) – 0,96*(4) (2)’ = (2) + 0,28*(1) – 1,73*(3) + 0,12*(4) (3)’ = (3) – 0,27*(1) - 0,75*(2) + 0,08*(4) (4)’ = (4) + 0,04*(1) – 6,50*(2) + 8,04*(3) Примечание: подбор коэффицентов выполнен на листе "Анализ". Решаются системы уравнений, цель которых - обратить внедиагональные элементы в нуль. Коэффиценты - это округлённые результаты решения таких систем уравнений. Конечно, это не дело. В результате получаю систему уравнений:
Для применения метода Якоби систему уравнений нужно преобразовать к виду:
X = B2 + A2*X Преобразую:

Далее делю каждую строку на множитель левого столбца, то есть на 16, 7, 3, 70 соответственно. Тогда матрица А2 имеет вид:


А вектор В2:



Метод Крамера применяется для решения систем линейных алгебраических уравнений (СЛАУ), в которых число неизвестных переменных равно числу уравнений и определитель основной матрицы отличен от нуля. В этой статье мы разберем как по методу Крамера находятся неизвестные переменные и получим формулы. После этого перейдем к примерам и подробно опишем решение систем линейных алгебраических уравнений методом Крамера.

Навигация по странице.

Метод Крамера - вывод формул.

Пусть нам требуется решить систему линейных уравнений вида

Где x 1 , x 2 , …, x n – неизвестные переменные, a i j , i = 1, 2, …, n, j = 1, 2, …, n числовые коэффициенты, b 1 , b 2 , …, b n - свободные члены. Решением СЛАУ называется такой набор значений x 1 , x 2 , …, x n при которых все уравнения системы обращаются в тождества.

В матричном виде эта система может быть записана как A ⋅ X = B , где - основная матрица системы, ее элементами являются коэффициенты при неизвестных переменных, - матрица – столбец свободных членов, а - матрица – столбец неизвестных переменных. После нахождения неизвестных переменных x 1 , x 2 , …, x n , матрица становится решением системы уравнений и равенство A ⋅ X = B обращается в тождество .

Будем считать, что матрица А – невырожденная, то есть, ее определитель отличен от нуля. В этом случае система линейных алгебраических уравнений имеет единственное решение, которое может быть найдено методом Крамера. (Методы решения систем при разобраны в разделе решение систем линейных алгебраических уравнений).

Метод Крамера основывается на двух свойствах определителя матрицы:

Итак, приступим к нахождению неизвестной переменной x 1 . Для этого умножим обе части первого уравнения системы на А 1 1 , обе части второго уравнения – на А 2 1 , и так далее, обе части n-ого уравнения – на А n 1 (то есть, уравнения системы умножаем на соответствующие алгебраические дополнения первого столбца матрицы А ):

Сложим все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных x 1 , x 2 , …, x n , и приравняем эту сумму к сумме всех правых частей уравнений:

Если обратиться к озвученным ранее свойствам определителя, то имеем

и предыдущее равенство примет вид

откуда

Аналогично находим x 2 . Для этого умножаем обе части уравнений системы на алгебраические дополнения второго столбца матрицы А :

Складываем все уравнения системы, группируем слагаемые при неизвестных переменных x 1 , x 2 , …, x n и применяем свойства определителя:

Откуда
.

Аналогично находятся оставшиеся неизвестные переменные.

Если обозначить

То получаем формулы для нахождения неизвестных переменных по методу Крамера .

Замечание.

Если система линейных алгебраических уравнений однородная, то есть , то она имеет лишь тривиальное решение (при ). Действительно, при нулевых свободных членах все определители будут равны нулю, так как будут содержать столбец нулевых элементов. Следовательно, формулы дадут .

Алгоритм решения систем линейных алгебраических уравнений методом Крамера.

Запишем алгоритм решения систем линейных алгебраических уравнений методом Крамера .

Примеры решения систем линейных алгебраических уравнений методом Крамера.

Разберем решения нескольких примеров.

Пример.

Найдите решение неоднородной системы линейных алгебраических уравнений методом Крамера .

Решение.

Основная матрица системы имеет вид . Вычислим ее определитель по формуле :

Так как определитель основной матрицы системы отличен от нуля, то СЛАУ имеет единственное решение, и оно может быть найдено методом Крамера. Запишем определители и . Заменяем первый столбец основной матрицы системы на столбец свободных членов, и получаем определитель . Аналогично заменяем второй столбец основной матрицы на столбец свободных членов, и получаем .

Вычисляем эти определители:

Находим неизвестные переменные x 1 и x 2 по формулам :

Выполним проверку. Подставим полученные значения x 1 и x 2 в исходную систему уравнений:

Оба уравнения системы обращаются в тождества, следовательно, решение найдено верно.

Ответ:

.

Некоторые элементы основной матрицы СЛАУ могут быть равны нулю. В этом случае в уравнениях системы будут отсутствовать соответствующие неизвестные переменные. Разберем пример.

Пример.

Найдите решение системы линейных уравнений методом Крамера .

Решение.

Перепишем систему в виде , чтобы стало видно основную матрицу системы . Найдем ее определитель по формуле

Имеем

Определитель основной матрицы отличен от нуля, следовательно, система линейных уравнений имеет единственное решение. Найдем его методом Крамера. Вычислим определители :

Таким образом,

Ответ:

Обозначения неизвестных переменных в уравнениях системы могут отличаться от x 1 , x 2 , …, x n . Это не влияет на процесс решения. А вот порядок следования неизвестных переменных в уравнениях системы очень важен при составлении основной матрицы и необходимых определителей метода Крамера. Поясним этот момент на примере.

Пример.

Используя метод Крамера, найдите решение системы трех линейных алгебраических уравнений с тремя неизвестными .

Решение.

В данном примере неизвестные переменные имеют другое обозначение (x , y и z вместо x 1 , x 2 и x 3 ). Это не влияет на ход решения, но будьте внимательны с обозначениями переменных. В качестве основной матрицы системы НЕЛЬЗЯ брать . Необходимо сначала упорядочить неизвестные переменные во всех уравнениях системы. Для этого перепишем систему уравнений как . Теперь основную матрицу системы хорошо видно . Вычислим ее определитель:

Определитель основной матрицы отличен от нуля, следовательно, система уравнений имеет единственное решение. Найдем его методом Крамера. Запишем определители (обратите внимание на обозначения) и вычислим их:

Осталось найти неизвестные переменные по формулам :

Выполним проверку. Для этого умножим основную матрицу на полученное решение (при необходимости смотрите раздел ):

В результате получили столбец свободных членов исходной системы уравнений, поэтому решение найдено верно.

Ответ:

x = 0, y = -2, z = 3 .

Пример.

Решите методом Крамера систему линейных уравнений , где a и b – некоторые действительные числа.

Решение.

Ответ:

Пример.

Найдите решение системы уравнений методом Крамера, - некоторое действительное число.

Решение.

Вычислим определитель основной матрицы системы: . выражения есть интервал , поэтому при любых действительных значениях . Следовательно, система уравнений имеет единственное решение, которое может быть найдено методом Крамера. Вычисляем и :