Реликтовое состояние. Поляризация реликтового излучения. Реликтовое излучение рассчитано учеными

> Что такое реликтовое излучение?

Открытие реликтового излучения : значение понятия, теория Большого Взрыва, расширение и карта Вселенной, движение света в пространстве, влияние темной материи.

Реликтовое излучение – послесвечение Большого Взрыва. Это одно из наиболее убедительных доказательств того, что это событие было во Вселенной. Лучше всего его объясняет Нед Райт из Калифорнийского университета (Лос-Анджелес).

Насколько полезно реликтовое излучение?

«Ну, наиболее полезная информация поступает на низком уровне. Когда я только начинал заниматься астрономией, не было 100% уверенности в достоверности теории Большого Взрыва. Поэтому наличие реликтового излучения в этой теории и отсутствие в конкурирующей заполнило большой пробел в знаниях.

Кроме того, спектр реликтового излучения сильно напоминает черный. Раз это темное тело, то мы можем полагать, что Вселенная плавно переходила от непрозрачности к прозрачности. Дипольная анизотропия микроволнового фона помогает точно определить факт, что мы движемся в пространстве. Одна небесная сторона намного жарче, а вторая холоднее, что намекает на температуру реликтового излучения. При подсчетах выясняется, что мы передвигаемся на десятую часть от процента скорости света – 370 км/с. Так что есть наше движение и передвижение сквозь Вселенную.

Спутник Планка позволил получить больше информации по линиям фонового реликтового излучения. У нас есть разница в 3 милликельвина, то есть различие в температуре пятен составляет +/- 100 микроквинов. Поэтому вам открывается детализированный рисунок области размером в 1.5 градусов. Он создается волновой акустикой, которая формируется из-за возмущения плотности в раннем этапе развития Вселенной. Можно даже проследить, как много времени прошло, прежде чем Вселенная станет прозрачной. И это важная информация, если вы решились изучать такую глобальную отрасль».

Что нам говорит реликтовое излучение и темная материя

«Реликтовое излучение имеет шаблон на шкале в 0.5 градусов, открывая нам эффективную линию позиции, вроде астрономической навигации. Вы измеряете одну звезду с секстантом и получаете линию своего нахождения. Но если смотрите на одну и ту же модель (установка акустической волны), то видите, что в распределении галактик все более локально. Конечно, речь идет об удаленных объектах, но в космологии это локальные территории.

Эти галактики демонстрируют одинаковый волнообразный узор, и вы можете измерить его, сравнить с тем, что наблюдается в прошлом, и получить линию пересечения позиции. Это помогает определить наше место во Вселенной, отыскать и даже подсчитать множество объектов. Также становится ясно, что существует темная энергия, которую никто пока не может понять, но мы знаем, на какие действия она способна. Ведь именно она ускоряет расширение». Вы сможете узнать еще много интересного про реликтовое излучение Вселенной (обнаружение, расширение Вселенной, большой взрыв, красное смещение, аномалии), если посмотрите видео.

Поляризация реликтового излучения

Физик Дмитрий Горбунов об эксперименте BICEP2, стадии инфляции и развитии теории гравитации:

Аномалии реликтового излучения

Астрофизик Олег Верходанов о низких мультиполях, влиянии объектов ближнего космоса на космологические измерения и учете ненайденных источников:

Реликтовое излучение – это фоновое микроволновое излучение, одинаковое во всех направления и имеет спектр, характерный для абсолютно черного тела при температуре ~ 2.7 K.

Считается, что по этому излучению можно узнать ответ на вопрос: откуда взялась ? По сути, реликтовое излучение – это то, что осталось от «строительства Вселенной», когда она начала только зарождаться после расширения плотной горячей плазмы. Для того чтобы проще было понять что такое реликтовое излучение сравним его с остатками человеческой деятельности. К примеру, человек изобретает что-то, другие это покупают, употребляют и выбрасывают отходы. Так вот мусор (тот самый результат жизни человека) – это и есть аналог реликтового излучения. По мусору можно узнать все – где человек был в определенный промежуток времени, что он ел, во что был одет, и даже о чем вел беседу. Также и реликтовое излучение. По его свойствам ученые пытаются построить картину момента большого взрыва, что возможно даст ответ на вопрос: как появилась Вселенная? Но все же, законы сохранения энергии создают определенные разногласия о возникновении вселенной, потому что ничто из ниоткуда не берется и никуда не девается. Динамика нашей вселенной – это переходы, смена свойств и состояний. Это можно наблюдать даже на нашей планете. К примеру, шаровая молния появляется в сгустке облака из частиц воды?! Как? Как так может быть? Никто не может объяснить происхождение тех или иных законов. Есть только моменты открытия этих законов, как и история открытия реликтового излучения.

Исторические факты изучения реликтового излучения

Впервые о реликтовом излучении упоминал Георгий Антонович Гамов (Джордж Гамов), когда пытался объяснить теорию большого взрыва. Он предполагал, что некое остаточное излучение заполняет пространство постоянно расширяющейся вселенной. В 1941 году, изучая поглощение одной из звезд скопления змееносца, Эндрю Мак-Келлар заметил спектральные линии поглощения света, которые соответствовали температуре 2,7 к. В 1948 году Георгий Гамов, Ральф Альферт и Роберт Герман установили температуру реликтового излучение в 5 К. Позже Георгий Гамов предположил температуру меньше известной в 3 К. Но это было лишь поверхностное изучение этого, на то время никому не известного факта. В начале 60-х годов Роберт Дикке и Яков Зельдович получили те же результаты, что и Гамов фиксируя волны, интенсивность излучения которых не зависела от времени. Пытливому уму ученых пришлось создать специальный радиотелескоп для более точной регистрации реликтового излучения. В начале 80-х годов с развитием космической промышленности реликтовое излучение стали изучать более тщательно с борта космического аппарата. Удалось установить свойство изотропии реликтового излучения (одинаковые свойства во всех направлениях, к примеру, на север 5 шагов за 10 секунд и на юг 5 шагов будут тоже за 10 секунд). На сегодняшний день продолжаются изучения свойств реликтового изучения и историю его возникновения.

Какими свойствами обладает реликтовое излучение?

Спектр реликтового излучения по данным, полученным с помощью инструмента FIRAS на борту спутника COBE

Спектр реликтового излучения равен 2,75 Кельвина, что аналогично саже охлажденной до такой температуры. Такое вещество всегда поглощает падающее на него излучение (свет), как бы вы на него не воздействовали. Хоть в магнитную катушку засовывайте, хоть ядерную бомбу кидайте, хоть прожектором светите. Такое тело тоже испускает малое излучение. Но это лишь доказывает тот факт, что нет ничего абсолютного. Всегда можно бесконечно долго выводить идеальный закон, добиваться максимума определенного свойства чего-либо, но всегда останется малая доля инерции.

Интересные факты, связанные с исследованием реликтового излучения

Максимальная частота реликтового излучения была зарегистрирована в 160,4 ГГц, что равно 1,9 мм волне. А плотность такого излучения составляет 400-500 фотонов на см 3 . Реликтовое излучение – это самое старое, самое древнее излучение, которое можно наблюдать вообще во вселенной. Каждая частица пролетела 400 000 лет, чтобы достигнуть Земли. Не километров, а лет! По данным наблюдений спутника и математическим расчетам реликтовое излучение как бы стоит на месте, а все галактики и созвездия движутся относительно него с огромной скоростью, порядка сотни километров в секунду. Это как наблюдать в окно движущегося поезда. Температура реликтового излучения в направлении созвездия на 0,1% выше, а в противоположном направлении на 0,1% ниже. Это объясняет движение Солнца в сторону данного созвездия относительно реликтового фона.

Что дает нам изучение реликтового излучения?

Ранняя Вселенная была холодной, очень холодной. Почему Вселенная была такой холодной, и что случилось, когда началось расширение вселенной? Можно предположить, что из-за большого взрыва случился выброс огромного количества сгустков энергии за пределы вселенной, затем Вселенная остыла, почти замерзла, но со временем энергия начала собираться в сгустки снова, и возникла некая реакция, которая и запустила процесс расширения вселенной. Тогда откуда взялась темная материя и взаимодействует ли она с реликтовым излучением? Возможно реликтовое излучение – это результат разложения темной материи, что более логично, чем остаточное излучение большого взрыва. Поскольку темная энергия может являться антиматерией и частицы темной материи, сталкиваясь с частицами материи, образуют в материальном и антиматериальном мире излучение подобно реликтовому. На сегодняшний день это самая свежая, неизученная область науки, в которой можно достичь успехов и запечатлиться в истории науки и общества.

Реликтовое излучение -космическое электромагнитное излучение с высокой степенью изотропности и со спектром, характерным для абсолютно черного тела с температурой? 2,725K . Реликтовое излучение было предсказано Г. Гамовым, Р. Альфером и Р. Германом в 1948 году на основе созданной ими первой теории Большого взрыва. Альфер и Герман смогли установить, что температура реликтового излучения должна составлять 5K , а Гамов дал предсказание в 3K . Хотя некоторые оценки температуры пространства существовали и до этого, они обладали несколькими недостатками. Во-первых, это были измерения лишь эффективной температуры пространства, не предполагалось, что спектр излучения подчиняется закону Планка. Во-вторых, они были зависимы от нашего особого расположения на краю Галактики и не предполагали, что излучение изотропно. Более того, они бы дали совершенно другие результаты, если бы Земля находилась где-либо в другом месте Вселенной. Ни сам Г. Гамов, ни многие его последователи не ставили вопрос об экспериментальном обнаружении реликтового излучения. По видимому, они считали, что это излучение не может быть обнаружено, так как оно «тонет» в потоках энергии, приносимых на землю излучением звезд и космических лучей.

Возможность обнаружения реликтового излучения на фоне излучения галактик и звезд в области сантиметровых радиоволн была обоснована расчетами А.Г. Дорошкевича и И.Д. Новикова, выполненными по предложению Я.Б. Зельдовича в 1964 г., т.е. за год до открытия А. Пепзиаса и Р. Вилсона.

В 1965 году Арно Пензиас и Роберт Вудроу Вильсон построили радиометр Дикке, который они намеревались использовать не для поиска реликтового излучения, а для экспериментов в области радиоастрономии и спутниковых коммуникаций. При калибровке прибора выяснилось, что антенна имеет избыточную температуру в 3,5 K , которую они не могли объяснить. Небольшой шумовой фон не менялся ни от направления, ни от времени работы. Сначала решили, что это шум, свойственный аппаратуре. Радиотелескоп демонтировали, еще и еще раз испытали его «начинку». Самолюбие инженеров было задето, и поэтому проверка шла до последней детали, до последней пайки. Устранили все. Собрали снова - шум возобновился. После долгих раздумий теоретики пришли к выводу, что это излучение могло быть ничем иным, как постоянным фоном космического радиоизлучения, заполняющего Вселенную ровным потоком. Получив звонок из Холдмдейла, Дикке остроумно заметил: «Мы сорвали куш, парни». Встреча между группами из Принстона и Холмдейла определила, что такая температура антенны была вызвана реликтовым излучением. Астрофизики рассчитали, что шум соответствует температуре, равной примерно 3 градусам Кельвина, и «прослушивается на различных частотах. В 1978 году Пензиас и Вилсон получили Нобелевскую премию за их открытие. Можно себе представить, как возрадовались сторонники «горячей» модели, когда пришло это сообщение. Это открытие не только укрепило позиции «горячей» модели. Реликтовое излучение позволило со ступеньки времени квазаров (8-10 миллиардов лет) опуститься на ступеньку, соответствующую 300 тысячам лет от самого «начала». Одновременно подтверждалась мысль, что некогда Вселенная имела плотность в миллиард раз более высокую, чем сейчас. Известно, что нагретое вещество всегда излучает фотоны. Согласно общим законам термодинамики, в этом проявляется стремление к равновесному состоянию, при котором достигается насыщение: рождение новых фотонов компенсируется обратным процессом, поглощением фотонов веществом, так что полное число фотонов в среде не меняется. Этот «фотонный газ» равномерно заполняет всю Вселенную. Температура газа фотонов близка к абсолютному нулю - около 3 кельвинов, но энергия, содержащаяся в нем, больше световой энергии, испущенной всеми звездами за время их жизни. На каждый кубический сантиметр пространства Вселенной приходится приблизительно пятьсот квантов излучения, а полное число фотонов в пределах видимой Вселенной в несколько миллиардов раз больше полного числа частиц вещества, т.е. атомов, ядер, электронов, из которых состоят планеты, звезды и галактики. Это общее фоновое излучение Вселенной называют с легкой руки И.С. Шкловского, реликтовым, т.е. остаточным, представляющим собой остаток, реликт плотного и горячего начального состояния Вселенной. Предположив, что вещество ранней Вселенной было горячим, Г. Гамов предсказал, что фотоны, которые находились тогда в термодинамическом равновесии с веществом, должны сохраниться в современную эпоху. Эти фотоны и удалось непосредственно обнаружить в 1965 г. Испытав общее расширение и связанное с ним охлаждение, газ фотонов образует сейчас фоновое излучение Вселенной, приходящее к нам равномерно со всех сторон. Квант реликтового излучения не имеет массы покоя, как всякий квант электромагнитного излучения, но обладает энергией, а следовательно, по знаменитой формуле Эйнштейна Е=Мс? , и массой, соответствующей этой энергии. Для большинства реликтовых квантов эта масса очень мала: гораздо меньше массы атома водорода - самого распространенного элемента звезд и галактик. Поэтому, несмотря на значительное преобладание по числу частиц, реликтовое излучение уступает звездам и галактикам по вкладу в общую массу Вселенной. В современную эпоху плотность излучения составляет 3*10 -34 г/см 3 , что приблизительно в тысячу раз меньше усредненной плотности вещества галактик. Но так было не всегда - в далеком прошлом Вселенной фотоны давали главный вклад в ее плотность. Дело в том, что в ходе космологического расширения плотность излучения падает быстрее плотности вещества. В этом процессе убывает не только концентрация фотонов (в том же темпе, что и концентрация частиц), но уменьшается и средняя энергия одного фотона, так как при расширении падает температура газа фотонов. В ходе последующего расширения Вселенной температура плазмы и излучения падала. Взаимодействие частиц с фотонами уже не успевало за характерное время расширения заметно влиять на спектр излучения. Однако даже при полном отсутствии взаимодействия излучения с веществом в ходе расширения Вселенной чернотельный спектр излучения остаётся чернотельным, уменьшается лишь температура излучения. Пока температура превышала 4000 K , первичное вещество было полностью ионизовано, пробег фотонов от одного акта рассеяния до др. был много меньше горизонта Вселенной. При T ? 4000K произошла рекомбинация протонов и электронов, плазма превратилась в смесь нейтральных атомов водорода и гелия, Вселенная стала полностью прозрачной для излучения. В ходе её дальнейшего расширения температура излучения продолжала падать, но чернотельный характер излучения сохранился как реликт, как «память» о раннем периоде эволюции мира. Это излучение обнаружили сначала на волне 7,35 см, а затем и на др. волнах (от 0,6 мм до 50 см).

Ни звёзды и радиогалактики, ни горячий межгалактический газ, ни переизлучение видимого света межзвёздной пылью не могут дать излучения, приближающегося по свойствам к микроволновому фоновому излучению: суммарная энергия этого излучения слишком велика, и спектр его не похож ни на спектр звёзд, ни на спектр радиоисточников. Этим, а также почти полным отсутствием флуктуации интенсивности по небесной сфере (мелкомасштабных угловых флуктуации) доказывается космологическое, реликтовое происхождение микроволнового фонового излучения.

Фоновое излучение изотропно лишь в системе координат, связанной с «разбегающимися» галактиками, в т. н. сопутствующей системе отсчёта (эта система расширяется вместе с Вселенной). В любой другой системе координат интенсивность излучения зависит от направления. Этот факт открывает возможность измерения скорости движения Солнца относительно системы координат, связанной с микроволновым фоновым излучением. Действительно, в силу Доплера, эффекта фотоны, распространяющиеся навстречу движущемуся наблюдателю, имеют более высокую энергию, нежели догоняющие его, несмотря на то, что в системе, связанной с м. ф. и., их энергии равны. Поэтому и температура излучения для такого наблюдателя оказывается зависящей от направления. Дипольная анизотропия реликтового излучения, связанная с движением Солнечной системы относительно поля этого излучения, к настоящему времени твердо установлена: в направлении на созвездие Льва температура реликтового излучения на 3,5 мК превышает среднюю, а в противоположном направлении (созвездие Водолея) на столько же ниже средней. Следовательно, Солнце (вместе с Землёй) движется относительно м. ф. и. со скоростью около 400 км/с по направлению к созвездию Льва. Точность наблюдений столь высока, что экспериментаторы фиксируют скорость движения Земли вокруг Солнца, составляющую 30 км/с. Учёт скорости движения Солнца вокруг центра Галактики позволяет определить скорость движения Галактики относительно фонового излучения Она составляет?600 км/с. Спектрофотометр дальнего инфракрасного излучения (FIRAS) установленный на спутнике NASA Cosmic Background Explorer (COBE) выполнил точные измерения спектра реликтового излучения. Эти измерения стали наиболее точными на сегодняшний день измерениями спектра абсолютно черного тела. Наиболее подробную карту реликтового излучения удалось построить в результате работы американского космического аппарата WMAP.

Спектр наполняющего Вселенную реликтового излучения соответствует спектру излучения абсолютно черного тела с температурой 2,725 K . Его максимум приходится на частоту 160,4 ГГц, что соответствует длине волны 1,9 мм. Оно изотропно с точностью до 0,001% - среднеквадратичное отклонение температуры составляет приблизительно 18 мкК. Это значение не учитывает дипольную анизотропию (разница между наиболее холодной и горячей областью составляет 6.706 мК), вызванную доплеровским смещением частоты излучения из-за нашей собственной скорости относительно системы координат, связанной с реликтовым излучением. Дипольная анизотропия соответствует движению Солнечной системы по направлению к созвездию Девы со скоростью? 370 км/с.

Одним из интересных открытий, связанных с электромагнитным спектром, является реликтовое излучение Вселенной . Открыто оно было случайно, хотя возможность его существования была предсказана.

История открытия реликтового излучения

История открытия реликтового излучения началась в 1964 году. Сотрудники американской лаборатории Белл Телефон разрабатывали систему связи с помощью искусственного спутника Земли. Работать эта система должна была на волнах длиной 7,5 сантиметра. Столь короткие волны применительно к спутниковой радиосвязи имеют некоторые преимущества, но до Арно Пензиаса и Роберта Уилсона никто этой проблемы не решал.

Они были первооткрывателями в этой сфере и должны были позаботиться о том, чтобы на той же волне не оказалось сильных помех, или чтобы о таких помехах работники связи знали заранее. В то время считали, что источником радиоволн, идущих из космоса, могут быть лишь точечные объекты вроде радиогалактик или звезд .

Источники радиоволн

В распоряжении ученых были исключительно точный приемник и поворотная рупорная антенна. С их помощью ученые могли прослушать весь небесный свод примерно так, как врач прослушивает грудь больного с помощью стетоскопа.

Сигнал природного источника

И вот едва антенну навели на одну из точек небосвода, как на экране осциллографа заплясала кривая линия. Типичный сигнал природного источника . Наверное, специалисты удивились своему везению: в первой же замеренной точке - источник радиоизлучения!

Но куда бы они ни направляли свою антенну, эффект оставался тот же. Ученые вновь и вновь проверяли исправность аппаратуры, но она была в полном порядке. И наконец они поняли, что открыли неизвестное ранее явление природы: вся Вселенная оказалась как бы наполнена радиоволнами сантиметровой длины .

Если бы мы могли видеть радиоволны, небесный свод представился бы нам светящимся от края до края.


Открытие Пензиаса и Уилсона было опубликовано. И уже не только они, а и учёные многих других стран начали поиски источников таинственных радиоволн, улавливаемых всеми приспособленными для этой цели антеннами и приемниками, где бы они ни находились и на какую бы точку неба ни нацеливались, причем интенсивность радиоизлучения на волне 7,5 сантиметра в любой точке была абсолютно одинаковой, оно словно бы размазано по всему небу равномерно.

Реликтовое излучение рассчитано учеными

Советские ученые А. Г. Дорошкевич и И. Д. Новиков, предсказавшие реликтовое излучение до его открытия, произвели сложнейшие подсчеты . Они учли все имеющиеся в нашей Вселенной источники излучения, учли и то, как изменилось излучение тех или иных объектов во времени. И оказалось, что в области сантиметровых волн все эти излучения минимальны и, следовательно, за обнаруженное свечение неба никак не ответственны.

Между тем дальнейшие расчеты показали, что плотность размазанного излучения очень велика. Вот сравнение фотонного киселя (так назвали ученые загадочное излучение) с массой всей материи по Вселенной.

Если все вещество всех видимых Галактик равномерно «размазать» по всему пространству Вселенной, то на три кубических метра пространства придется лишь один атом водорода (для простоты всю материю звезд будем считать водородом). И в то же время в каждом кубическом сантиметре реального пространства содержится около 500 фотонов излучения.

Немало, даже если сравнивать не количество единиц вещества и излучения, а прямо их массы. Откуда же взялось столь интенсивное излучение?

В свое время советский ученый А. А. Фридман, решая знаменитые уравнения Эйнштейна, открыл, что наша Вселенная находится в постоянном расширении . Вскоре было найдено подтверждение этому.

Американец Э. Хаббл обнаружил явление разбегания Галактик . Экстраполируя это явление в прошлое, можно вычислить момент, когда все вещество Вселенной находилось в весьма малом объеме и плотность его была несравненно большей, чем сейчас. В ходе расширения Вселенной происходит и удлинение длины волны каждого кванта пропорционально расширению Вселенной; при этом квант как бы «охлаждается» - ведь чем меньше длина волны
кванта, тем он «горячее».

Сегодняшнее сантиметровое излучение имеет яркостную температуру около 3 градусов абсолютной шкалы Кельвина. А десять миллиардов лет назад, когда Вселенная была несравненно меньшей, а плотность ее вещества очень большой, эти кванты обладали температурой порядка 10 миллиардов градусов.

С тех пор и «засыпана» наша Вселенная квантами непрерывно остывающего излучения. Потому-то «размазанное» по Вселенной сантиметровое радиоизлучение и получило название
реликтовое излучение.

Реликтами , как известно, называются остатки древнейших животных и растений, сохранившихся до наших дней. Кванты сантиметрового излучения - безусловно, самый древний из всех возможных реликтов. Ведь образование их относится к эпохе, отстоящей от нас примерно на 15 миллиардов лет.

Знание о Вселенной принесло реликтовое излучение

Практически ничего нельзя сказать о том, каким было вещество в нулевой момент, когда его плотность была бесконечно большой. Но явления и процессы, происходившие во Вселенной , всего через секунду после ее рождения и даже раньше, до 10~8 секунды, ученые представляют себе уже довольно хорошо. Сведения об этом принесло именно реликтовое излучение .

Итак, прошла секунда с нулевого момента. Материя нашей Вселенной имела температуру 10 миллиардов градусов и состояла из своеобразной «каши» реликтовых квантов, электродов, позитронов, нейтрино и антинейтрино . Плотность «каши» была огромной - более тонны на каждый кубический сантиметр. В такой «тесноте» непрерывно происходили столкновения нейтронов и позитронов с электронами, протоны превращались в нейтроны и наоборот.

Но больше всего было тут именно квантов - в 100 миллионов раз больше, чем нейтронов и протонов. Конечно, при подобной плотности и температуре не могли существовать никакие сложные ядра вещества: они тут не распадались.

Прошло сто секунд. Расширение Вселенной продолжалось, плотность ее непрерывно уменьшалась, температура падала. Позитроны почти исчезли, нейтроны превратились в протоны.

Началось образование атомных ядер водорода и гелия. Расчеты, проведенные учеными, показывают, что 30 процентов нейтронов объединились, образуя ядра гелия, 70 же процентов их остались одинокими, стали ядрами водорода. В ходе этих реакций возникали новые кванты, но их количество не шло уже ни в какое сравнение с первоначальным, так что можно считать, что оно и вовсе не изменялось.

Расширение Вселенной продолжалось. Плотность «каши», столь круто заваренной природой вначале, снижалась пропорционально кубу линейного расстояния. Проходили годы, столетия, тысячелетия.

Прошло 3 миллиона лет. Температура «каши» к этому моменту упала до 3-4 тысяч градусов, плотность вещества также приблизилась к известной нам сегодня, однако сгустки материи, из которых могли бы сложиться звезды и Галактики, возникнуть еще не могли. Слишком велико было в то время лучевое давление, расталкивавшее любое такое образование. Даже атомы гелия и водорода оставались ионизированными: электроны существовали отдельно, протоны и ядра атомов - также отдельно.

Только к концу трехмиллионнолетнего периода в остывающей «каше» начали появляться первые сгущения. Их было поначалу очень немного. Едва одна тысячная часть «каши» сгустилась в своеобразные протозвезды, как эти образования начали «гореть» аналогично современным звездам.

И исторгаемые ими фотоны и кванты энергии разогрели начавшую было остывать «кашу» до температур, при которых образование новых сгущений опять оказалось невозможным.

Периоды остывания и повторного разогревания «каши» вспышками протозвезд чередовались, сменяя друг друга. А на каком-то этапе расширения Вселенной образование новых сгущений стало практически невозможным уже потому, что некогда столь густая «каша» слишком «разжижилась».

Примерно 5 процентов материи успело объединиться, а 95 процентов рассеялось в пространстве расширяющейся Вселенной. Так «рассеялись» и некогда горячие кванты, образовавшие реликтовое излучение. Так рассеялись и ядра атомов водорода и гелия, которые входили в состав «каши».

Гипотеза образования Вселенной

Вокруг некоторых из этих звезд образовались системы планет, по крайней мере, на одной из таких планет возникла жизнь, в ходе эволюции породившая разум. Как часто встречаются в просторах космоса звезды, окруженные хороводом планет, ученые пока еще не знают. Ничего не могут они сказать и о том, как часто .


Да и вопрос о том, как часто растение жизни расцветает пышным цветком разума, остается открытым. Известные нам сегодня гипотезы, трактующие все эти вопросы, больше похожи на малообоснованные догадки.

Но сегодня наука развивается лавинообразно. Совсем недавно ученые вообще не представляли себе, как начиналась наша . Открытое около 70 лет назад реликтовое излучение позволило нарисовать ту картину. Сегодня у человечества не хватает фактов, опираясь на которые, оно сможет ответить на сформулированные выше вопросы.

Проникновение в космическое пространство, посещения Луны и других планет, приносят новые факты. А за фактами следуют уже не гипотезы, а строгие выводы.

Реликтовое излучение говорит об однородности Вселенной

О чем еще рассказали ученым реликтовые лучи, эти свидетели рождения нашей Вселенной?

А. А. Фридман решил одно из уравнений, данных Эйнштейном, и на основе этого решения открыл расширение Вселенной. Для того чтобы решить уравнения Эйнштейна, надо было задать так называемые начальные условия.

Фридман исходил из предположения, что Вселенная однородна и изотропна, что вещество в ней распределено равномерно. И в течение 5-10 лет, прошедших со дня открытия Фридмана, вопрос о том, правильно ли было это его предположение, оставался открытым.

Сейчас он по существу снят. Об изотропности Вселенной свидетельствует удивительная равномерность реликтового радиоизлучения. Второй факт свидетельствует о том же - распределение вещества Вселенной между Галактиками и межгалактическим газом.


Ведь межгалактический газ, составляющий основную часть вещества Вселенной, распределен по ней столь же равномерно, как и реликтовые кванты .

Открытие реликтового излучения дает возможность заглянуть не только в сверхдалекое прошлое - за такие пределы времени, когда не было ни нашей Земли, ни нашего Солнца, ни нашей Галактики, ни даже самой Вселенной.

Как удивительный телескоп, который можно направить в любую сторону, открытие реликтового излучения позволяет заглянуть и в сверхдалекое будущее. Такое сверхдалекое, когда уже не будет ни Земли, ни Солнца, ни Галактики.

Здесь поможет явление расширения Вселенной, то как разлетаются в пространстве слагающие ее звезды, Галактики, облака пыли и газа. Вечен ли этот процесс? Или же разлет замедлится, остановится, а затем сменится сжатием? И не являются ли сменяющие друг друга сжатия и расширения Вселенной своеобразными пульсациями материи, не уничтожимой
и вечной?

Ответ на эти вопросы зависит в первую очередь от того, сколько материи содержится во Вселенной. Если ее общего тяготения достаточно, чтобы преодолеть инерцию разлета, то расширение неизбежно сменится сжатием, при котором Галактики постепенно сблизятся. Ну а если сил гравитации для торможения и преодоления инерции разлета недостаточно, наша Вселенная обречена: она рассеется в пространстве!

Открытие реликтового излучения Вселенной

Предисловие

РЕЛИКТОВОЕ ИЗЛУЧЕНИЕ , космическое электромагнитное излучение, приходящее на Землю со всех сторон неба примерно с одинаковой интенсивностью и имеющее спектр, характерный для излучения абсолютно чёрного тела при температуре около 3 К (3 градуса по абсолютной шкале Кельвина, что соответствует –270°C). При такой температуре основная доля излучения приходится на радиово́лны сантиметрового и миллиметрового диапазонов. Плотность энергии реликтового излучения 0,25 эВ/см3 . Радиоастроно́мы-экспериментаторы предпочитают называть это излучение «космическим микроволновы́м фоновым излучением» (М. ф. и.) cosmic microwave background, CMB). Астрофизики-теоретики часто называют его «реликтовым излучением» (термин предложен русским астрофизиком И.С. Шкловским), поскольку в рамках общепринятой сегодня теории горячей Вселенной это излучение возникло на раннем этапе расширения нашего мира, когда его вещество было практически однородным и очень горячим. Далее мы будем называть это излучение «реликтовым». Открытие в 1965 году реликтового излучения имело огромное значение для космологии; оно стало одним из важнейших достижений естествознания двадцатого века и, безусловно, самым важным для космологии после открытия красного смещения в спектрах галактик. Слабое реликтовое излучение несёт нам све́дения о первых мгновениях существования нашей Вселенной, о той далекой эпохе, когда вся Вселенная была горячей и в ней ещё не существовало ни планет, ни звёзд, ни галактик. Проведенные в последние годы детальные измерения этого излучения с помощью наземных, стратосфе́рных и космических обсерваторий приоткрывают завесу над тайной самого́ рождения Вселенной.

Открытие реликтового излучения

В 1960 году́ в Кроуфорд-Хилле, Холмдел (шт. Нью-Джерси, США) была построена антенна для приёма радиосигналов, отраженных от спутника-баллона «Эхо». К 1963 го́ду для работы со спутником эта антенна была уже не нужна, и радиофизики Роберт Вудро Уилсон (р. 1936) и Арно Элан Пензиас (р. 1933) из лаборатории компании «Белл телефон» решили использовать её для радиоастрономических наблюдений. Антенна представляла собой 20-футовый рупор. Вместе с новейшим приёмным устройством этот радиотелескоп был в то время самым чувствительным инструментом в мире для измерения радиоволн, приходящих из космоса.

В первую очередь предполагалось провести измерения радиоизлучения межзвёздной среды́ нашей Галактики на волне длиной 7,35 см. Арно Пе́нзиас и Роберт Уилсон не знали о теории горячей Вселенной и не собирались искать реликтовое излучение. Для точного измерения радиоизлучения Галактики необходимо было учесть все возможные помехи, вызываемые излучением земной атмосферы и поверхности Земли, а также помехи, возникающие в антенне, электрических цепях и приемниках.

Предварительные испытания приемной системы показали несколько больший шум, чем ожидалось по расчётам, но казалось правдоподобным, что это связано с небольшим избытком шума в усилительных цепях. Чтобы избавиться от этих проблем, Пензиас и Уилсон использовали устройство, известное как «холодная нагрузка»: сигнал, приходящий от антенны, сравнивается с сигналом от искусственного источника, охлажденного жидким гелием при температуре около четырех градусов выше абсолютного нуля (4 K) . В обоих случаях электрический шум в усилительных цепях должен быть одинаков, и поэтому полученная при сравнении разница дает мощность сигнала, идущего от антенны. Этот сигнал содержит вклады только от антенного устройства, земной атмосферы и астрономического источника радиоволн, попадающего в поле зрения антенны. Пензиас и Уилсон ожидали, что антенное устройство будет давать очень небольшой электрический шум. Однако, чтобы проверить это предположение, они начали свои наблюдения на сравнительно коротких волнах длиной 7,35 см, на которых радиошум от Галактики должен быть пренебрежимо мал. Естественно, некоторый радиошум ожидался на такой длине волны́ и от земной атмосферы, но этот шум должен был иметь характерную зависимость от направления: он должен быть пропорционален толщине атмосферы в том направлении, в каком смотрит антенна: немного меньше в направлении зенита, чуть больше в направлении горизонта. Ожидалось, что после вычитания атмосферного члена с характерной зависимостью от направления не останется никакого существенного сигнала от антенны и это подтвердит, что электрический шум, производимый антенным устройством, пренебрежимо мал. После этого можно будет начать изучение само́й Галактики на больших длинах волн – около 21 см, где излучение Млечного Пути имеет вполне заметное значение.

Микроволново́й шум

К своему удивлению, Пензиас и Уилсон обнаружили весной 1964 , что они принимают на длине волн 7,35 см довольно заметное количество микроволнового шума, не зависящего от направления. Они нашли, что этот «статический фон» не меняется в зависимости от времени суток, а позднее обнаружили, что он не зависит и от времени года. Следовательно, это не могло быть излучением Галактики, ибо в этом случае его интенсивность менялась бы в зависимости от того, смотрит антенна вдоль плоскости Млечного Пути или поперек. К тому же, если бы это было излучением нашей Галактики, то большая спиральная галактика М 31 в Андромеде, во многих отношениях похожая на нашу, тоже должна была бы сильно излучать на волне 7,35 см, а этого не наблюдалось. Отсутствие каких-либо вариаций наблюдаемого микроволново́го шума с направлением весьма серьезно указывало на то, что эти радиово́лны, если они действительно существуют, приходят не от Млечного Пути, а от значительно большего объёма Вселенной. Исследователям было ясно, что необходимо снова проверить, не может ли сама антенна производить больше электрического шума, чем ожидалось. В частности, было известно, что в рупоре антенны угнезди́лась пара голубей. Они были пойманы, отправлены по почте на принадлежащий компании «Белл» участок в Виппани, выпущены на волю, вновь обнаружены несколькими днями спустя на своем месте в антенне, снова пойманы и наконец утихоми́рены более решительными средствами. Однако во время аренды помещения голуби покрыли внутренность антенны тем, что Пензиас назвал «белым диэлектрическим веществом», которое при комнатной температуре могло быть источником электрического шума. В начале 1965 года был демонтирован рупор антенны и вычищена вся грязь, однако это, как и все другие ухищрения, дало очень малое уменьшение наблюдаемого уровня шума.

Когда все источники помех были тщательно проанализированы и учтены́, Пензиас и Уилсон вынуждены были сделать вывод, что излучение приходит из космоса, причем со всех сторон с одинаковой интенсивностью. Оказалось, что пространство излучает так, как будто бы оно нагре́то до температуры 3,5 кельвина (точнее, достигнутая точность позволяла заключить, что «температура космоса» от 2,5 до 4,5 кельвина). Необходимо заметить, что это очень тонкий экспериментальный результат: например, если перед рупором антенны расположить брикет мороженого, то он сиял бы в радиодиапазоне, в 22 млн. раз более ярком, чем соответствующей участок неба. Обдумывая неожиданный результат своих наблюдений, Пензиас и Уилсон не торопились с публикацией. Но события развивались уже помимо их воли. Случилось так, что Пензиас позвонил по совершенно другому поводу своему приятелю Бернарду Берку из Массачусетского технологического института. Незадолго до этого Берк слышал от своего коллеги Кена Тернера из Института Карнеги о докладе, который тот, в свою очередь, слышал в Университете Джонса Хопкинса, сделаланном теоретиком из Принстона Фи́лом Пиблслом, работавшим под руководством Роберта Дикке. В этом докладе Пиблс приводил аргументы в пользу того, что должен существовать фоновый радиошум, оставшийся от ранней Вселенной и имеющий сейчас эквивалентную температуру около 10 K . Пензиас позвонил Дикке, и обе группы исследователей встретились. Роберту Дикке и его коллегам Ф.Пиблсу, П.Роллу и Д.Уилкинсону стало ясно, что А.Пензиас и Р.Уилсон обнаружили реликтовое излучение горячей Вселенной. Ученые решили одновременно опубликовать два письма в престижном «Астрофизическом журнале» («Astrophysical Journal»). Летом 1965 года были опубликованы обе работы: Пензиаса и Уилсона об открытии реликтового излучения и Дикке с коллегами – с его объяснением при помощи теории горячей Вселенной. По-видимому, не до конца убеждённые в космологической интерпретации своего открытия, Пензиас и Уилсон дали своей заметке скромное название: Измерение избыточной антенной температуры на частоте 4080 МГц. Они просто объявили, что «измерения эффективной зенитной температуры шума... дали значение на 3,5 K выше, чем ожидалось», и избежали всяких упоминаний о космологии, за исключением фразы, что «возможное объяснение наблюдаемой избыточной температуры шума дано Дикке, Пиблсом, Роллом и Уилкинсоном в сопутствующем письме в этом же выпуске журнала».

В последующие годы на различных длинах волн от десятков сантиметров до доли миллиметра были проведены многочисленные измерения. Наблюдения показали, что спектр реликтового излучения соответствует формуле Планка, как это и должно быть для излучения с определенной температурой. Подтвердилось, что эта температура примерно равна 3 K . Было сделано замечательное открытие, доказывающее, что Вселенная в начале расширения была горячей. Таково сложное переплетение событий, завершившееся открытием горячей Вселенной Пензиасом и Уилсоном в 1965 году. Установление факта сверхвысокой температуры в начале расширения Вселенной явилось отправной точкой важнейших исследований, ведущих к раскрытию тайн не только астрофизических, но и тайн строения материи. Наиболее точные измерения реликтового излучения проведены из космоса: это эксперимент «Реликт» на советском спутнике «Прогноз-9» (1983–1984) и эксперимент DMR (Differential Microwave Radiometer) на американском спутнике COBE (Cosmic Background Explorer, ноябрь 1989–1993) Именно последний позволил точнее всего определить температуру реликтового излучения: 2,725 ± 0,002 K .

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!