Определение уравнения состояния вещества. Что значит "уравнение состояния"

Для равновесной термодинамической системы существует функциональная связь между параметрами состояния, ко­торая называется уравнением со­стояния . Опыт показывает, что удель­ный объем, температура и давление про­стейших систем, которыми являются газы, пары или жидкости, связаны термическим уравнением состо­яния вида .

Уравнению состояния можно придать другую форму:

Эти уравнения показывают, что из трех основных параметров, определяю­щих состояние системы, независимыми являются два любых.

Для решения задач методами термо­динамики совершенно необходимо знать уравнение состояния. Однако оно не мо­жет быть получено в рамках термодина­мики и должно быть найдено либо экспе­риментально, либо методами статистиче­ской физики. Конкретный вид уравнения состояния зависит от индивидуальных свойств вещества.

Уравнение состояния идеальных га­зов

Из уравнений (1.1) и (1.2) следует, что .

Рассмотрим 1 кг газа. Учитывая, что в нем содержится N молекул и, следова­тельно, , получим: .

Постоянную величину Nk, отнесен­ную к 1 кг газа, обозначают буквой R и называют газовой постоян­ной . Поэтому

Или . (1.3)

Полученное соотношение представляет собой уравнение Клапейрона.

Умножив (1.3) на М, получим урав­нение состояния для произвольной массы газа М:

Уравнению Клапейрона можно при­дать универсальную форму, если отнести газовую постоянную к 1 кмолю газа, т. е. к количеству газа, масса которого в килограммах численно равна молеку­лярной массе μ. Положив в (1.4) М= μ и V=V μ, получим для одного моля урав­нение Клапейрона - Менделеева:

Здесь - объем киломоля газа, а - универсальная газовая постоянная.

В соответствии с законом Авогадро (1811г.) объем 1 кмоля, одинаковый в одних и тех же условиях для всех иде­альных газов, при нормальных физических условиях равен 22,4136 м 3 , поэтому

Газовая постоянная 1 кг газа составляет .

Уравнение состояния реальных га­зов

В реальных газах в отличие от иде­альных существенны силы межмолеку­лярных взаимодействий (силы притяже­ния, когда молекулы находятся на значи­тельном расстоянии, и силы отталкивания при достаточном сближении их друг с другом) и нельзя пренебречь собствен­ным объемом молекул.

Наличие межмолекулярных сил от­талкивания приводит к тому, что молеку­лы могут сближаться между собой толь­ко до некоторого минимального расстоя­ния. Поэтому можно считать, что свобод­ный для движения молекул объем будет равен , где b - тот наименьший объем, до которого можно сжать газ. В соответствии с этим длина свободного пробега молекул уменьшается и число ударов о стенку в единицу времени, а следовательно, и давление увеличива­ется по сравнению с идеальным газом в отношении , т. е.

Силы притяжения действуют в том же направлении, что и внешнее давле­ние, и приводят к возникновению молеку­лярного (или внутреннего) давления. Сила молекулярного притяжения каких-либо двух малых частей газа пропорцио­нальна произведению числа молекул в каждой из этих частей, т. е. квадрату плотности, поэтому молекулярное давле­ние обратно пропорционально квадрату удельного объема газа: рмол = а/v 2 , где а - коэффициент пропорциональности, зависящий от природы газа.

Отсюда получаем уравнение Ван-дер-Ваальса (1873 г.):

При больших удельных объемах и сравнительно невысоких давлениях ре­ального газа уравнение Ван-дер-Ваальса практически вырождается в уравнение состояния идеального газа Клапейрона, ибо величина a /v 2

(по сравнению с p) и b (по сравнению с v) становятся прене­брежимо малыми.

Уравнение Ван-дер-Ваальса с ка­чественной стороны достаточно хорошо описывает свойства реального газа, но результаты численных расчетов не всег­да согласуются с экспериментальными данными. В ряде случаев эти отклонения объясняются склонностью молекул ре­ального газа к ассоциации в отдельные группы, состоящие из двух, трех и более молекул. Ассоциация происходит вслед­ствие несимметричности внешнего элек­трического поля молекул. Образовавши­еся комплексы ведут себя как самостоя­тельные нестабильные частицы. При столкновениях они распадаются, затем вновь объединяются уже с другими мо­лекулами и т. д. По мере повышения тем­пературы концентрация комплексов с большим числом молекул быстро уменьшается, а доля одиночных молекул растет. Большую склонность к ассоциа­ции проявляют полярные молекулы во­дяного пара.

Поскольку уравнение состояния pV = nRT имеет простой вид и отражает с разумной точностью поведение многих газов в широком диапазоне внешних условий, оно очень полезно. Но, конечно, оно не является универсальным. Очевидно, что этому уравнению не подчиняется ни одно вещество в жидком и твердом состоянии. Не существует таких конденсированных веществ, объем которых уменьшался бы вдвое при увеличении давления в два раза. Даже газы при сильном сжатии или вблизи точки конденсации проявляют заметные отклонения от указанного поведения. Было предложено много других более сложных уравнений состояния. Некоторые из них отличаются высокой точностью в ограниченной области изменения внешних условий. Некоторые применимы к специальным классам веществ. Имеются уравнения, которые применимы к более широкому классу веществ при более сильно различающихся внешних условиях, но они не очень точны. Здесь мы не будем тратить время на подробное рассмотрение таких уравнений состояния, но все же дадим некоторое представление о них.

Предположим, что молекулы газа являются абсолютно упругими твердыми шариками, столь малыми, что их общим объемом можно пренебречь по сравнению с объемом, занимаемым газом. Предположим также, что между молекулами не существует никаких притягивающих или отталкивающих сил и что они движутся совершенно хаотически, сталкиваясь случайно друг с другом и со стенками сосуда. Если применить к этой модели газа элементарную классическую механику, то мы получим соотношение pV = RT, не прибегая к каким-либо обобщениям опытных данных типа законов Бойля - Мариотта и Шарля - Гей-Люсса-ка. Иначе говоря, газ, который мы назвали «идеальным», ведет себя так, как должен был бы вести себя газ, состоящий из очень маленьких твердых шариков, взаимодействующих друг с другом только в момент столкновений. Давление, оказываемое таким газом на любую поверхность, равно просто средней величине импульса, передаваемой за единицу времени молекулами единице поверхности при столкновении с ней. Когда молекула массой m налетает на поверхность, имея перпендикулярную поверхности компоненту скорости , и отражается с компонентой скорости , то результирующий импульс, переданный поверхности, согласно законам механики, равен Эти скорости довольно высоки (несколько сотен метров в секунду для воздуха при нормальных условиях), поэтому время столкновения очень мало и передача импульса происходит почти мгновенно. Но столкновения столь многочисленны (порядка 1023 на 1 см2 в 1 с в воздухе при атмосферном давлении), что при измерении любым прибором давление оказывается абсолютно постоянным во времени и непрерывным.

Действительно, большинство прямых измерений и наблюдений показывает, что газы являются непрерывной средой. Вывод о том, что они должны состоять из большого числа отдельных молекул, является чисто умозрительным.

Мы знаем из опыта, что реальные газы не подчиняются правилам поведения, предсказываемым только что описанной идеальной моделью. При достаточно низких температурах и достаточно высоких давлениях любой газ конденсируется в жидкое или твердое состояния, которые по сравнению с газом можно считать несжимаемыми. Таким образом, общим объемом молекул не всегда можно пренебречь по сравнению с объемом сосуда. Ясно также, что между молекулами существуют силы притяжения, которые при достаточно низких температурах могут связывать молекулы, приводя к образованию конденсированной формы вещества. Эти соображения наводят на мысль, что один из способов получения уравнения состояния, более общего, чем уравнение состояния идеального газа, заключается в учете конечного объема реальных молекул и сил притяжения между ними.

Учет молекулярного объема не представляет сложности, по крайней мере на качественном уровне. Примем просто, что свободный объем, доступный для движения молекул, меньше полного объема газа V на величину 6, которая связана с размером молекул и иногда называется связанным объемом. Таким образом, мы должны заменить V в уравнении состояния идеального газа на (V - b); тогда получаем

Это соотношение иногда называют уравнением состояния Клаузиуса в честь немецкого физика Рудольфа Клаузиуса, который сыграл большую роль в развитии термодинамики. Мы узнаем больше о его работах в следующей главе. Заметим, что уравнение (5) написано для 1 моль газа. Для n моль нужно записать p(V-nb) = nRT.

Учесть силы притяжения между молекулами несколько труднее. Молекула, находящаяся в центре объема газа, т. е. далеко от стенок сосуда, будет «видеть» одинаковое число молекул во всех направлениях. Следовательно, силы притяжения одинаковы во всех направлениях и уравновешивают друг друга, так что никакой результирующей силы не возникает. Когда молекула приближается к стенке сосуда, то она «видит» больше молекул позади себя, чем перед собой. В результате возникает сила притяжения, направленная к центру сосуда. Движение молекулы несколько сдерживается, и она ударяется о стенку сосуда менее сильно, чем в случае отсутствия сил притяжения.

Поскольку давление газа обусловлено передачей импульса молекулами, сталкивающимися со стенками сосуда (или с любой другой поверхностью, расположенной внутри газа), давление, создаваемое притягивающимися молекулами, оказывается несколько меньше, чем давление, создаваемое теми же молекулами в отсутствие притяжения. Оказывается, что уменьшение давления пропорционально квадрату плотности газа. Поэтому мы можем написать

где p - плотность в молях на единицу объема, - давление, создаваемое идеальным газом непритягивающихся молекул, и а - коэффициент пропорциональности, характеризующий величину сил притяжения между молекулами данного сорта. Вспомним, что , где n - число молей. Тогда соотношение (б) можно переписать для 1 моль газа в несколько ином виде:

где а имеет характерное значение для данного вида газа. Правая часть уравнения (7) представляет собой «исправленное» давление идеального газа, которым нужно заменить p в уравнении Если мы учтем обе поправки, одну за счет объема в соответствии с (б) и другую за счет сил притяжения согласно (7), то получим для 1 моль газа

Это уравнение впервые было предложено голландским физиком Д. Ван-дер-Ваальсом в 1873 г. Для n моль оно принимает вид

Уравнение Ван-дер-Ваальса учитывает в простой и наглядной форме два эффекта, которые обусловливают отклонения поведения реальных газов от идеального. Очевидно, что поверхность, представляющая уравнение состояния Ван-дер-Ваальса в пространстве p, V, Ту не может быть такой простой, как поверхность, соответствующая идеальному газу. Часть такой поверхности для конкретных значений а и b показана на рис. 3.7. Изотермы изображены сплошными линиями. Изотермы, отвечающие температурам выше температуры которой соответствует так называемая критическая изотерма, не имеют минимумов и перегибов и выглядят подобно изотермам идеального газа, показанным на рис. 3.6. При температурах ниже изотермы имеют максимумы и минимумы. При достаточно низких температурах существует область, в которой давление становится отрицательным, как показывают участки изотерм, изображенные штриховыми линиями. Эти горбы и провалы, а также область отрицательных давлений не соответствуют физическим эффектам, а просто отражают недостатки уравнения Ван-дер-Ваальса, его неспособность описать истинное равновесное поведение реальных веществ.

Рис. 3.7. Поверхность p - V - Т для газа, подчиняющегося уравнению Ван-дер-Ваальса .

На самом деле в реальных газах при температурах ниже и достаточно высоком давлении силы притяжения между молекулами приводят к конденсации газа в жидкое или твердое состояние. Таким образом, аномальной области пиков и провалов на изотермах в области отрицательного давления, которую предсказывает уравнение Ван-дер-Ваальса, в реальных веществах соответствует область смешанной фазы, в которой сосуществуют пар и жидкое или твердое состояние. Рис. 3.8 иллюстрирует эту ситуацию. Такое «разрывное» поведение вообще не может быть описано никаким сравнительно простым и «непрерывным» уравнением.

Несмотря на свои недостатки, уравнение Ван-дер-Ваальса полезно для описания поправок к уравнению идеального газа. Значения а и b для различных газов определены из экспериментальных данных, некоторые типичные примеры приведены в табл. 3.2. К сожалению, для любого конкретного газа не существует единственных значений а и b, которые обеспечили бы точное описание зависимости между p, V и Т в широком диапазоне с помощью уравнения Ван-дер-Ваальса.

Таблица 3.2. Характерные значения постоянных Ван-дер-Ваальса

Тем не менее значения, указанные в таблице, дают нам некоторую качественную информацию об ожидаемой величине отклонения от поведения идеального газа.

Поучительно рассмотреть конкретный пример и сравнить результаты, полученные с помощью уравнения идеального газа, уравнения Клаузиуса и уравнения Ван-дер-Ваальса с данными измерений. Рассмотрим 1 моль водяного пара в объеме 1384 см3 при температуре 500 К. Вспоминая, что (моль К), и используя значения из табл. 3.2, получаем

а) из уравнения состояния идеального газа:

б) из уравнения состояния Клаузиуса: атм;

в) из уравнения состояния Ван-дер-Ваальса:

г) из экспериментальных данных:

Для этих конкретных условий закон идеального газа дает завышенное примерно на 14% значение давления, уравнение

Рис. 3.8. Поверхность для вещества, которое сжимается при охлаждении. Поверхность, подобная этой, не может быть описана одним уравнением состояния и должна строиться на основании экспериментальных данных.

Клаузиуса дает еще большую ошибку - около 16%, а уравнение Ван-дер-Ваальса завышает давление примерно на 5%. Интересно, что уравнение Клаузиуса дает большую ошибку, чем уравнение идеального газа. Причина заключается в том, что поправка на конечный объем молекул увеличивает давление, а член, учитывающий притяжение, уменьшает его. Таким образом, эти поправки частично компенсируют друг друга. Закон идеального газа, в котором не учитывается ни та, ни другая поправка, дает более близкое к действительному значение давления, чем уравнение Клаузиуса, в котором учитывается только увеличение его за счет уменьшения свободного объема. При очень больших плотностях поправка, учитывающая объем молекул, становится намного более существенной и уравнение Клаузиуса оказывается более точным, чем уравнение идеального газа.

Вообще говоря, для реальных веществ мы не знаем явного соотношения между р, V, Т и п. Для большинства твердых тел и жидкостей нет даже грубых приближений. Тем не менее мы твердо уверены, что такое соотношение существует для каждого вещества и что вещество подчиняется ему.

Кусок алюминия будет занимать определенный объем, всегда в точности одинаковый, если температура и давление имеют заданные значения. Мы записываем это общее утверждение в математической форме:

Эта запись утверждает существование некоторого функционального соотношения между р, V, Т и n, которое может быть выражено уравнением. (Если все члены такого уравнения перенести налево, правая часть, очевидно, будет равна нулю.) Такое выражение называется неявным уравнением состояния. Оно означает существование некоторого соотношения между переменными. Оно говорит также, что мы не знаем, каково это соотношение, но вещество его «знает»! Рис. 3.8 позволяет нам представить себе, насколько сложным должно быть уравнение, которое описывало бы реальное вещество в широком диапазоне переменных. На этом рисунке изображена поверхность для реального вещества, которое сжимается при замерзании (так ведут себя почти все вещества, кроме воды). Мы недостаточно искусны, чтобы предсказать путем вычисления, какой объем займет вещество при произвольно заданных значениях р, T и n, но мы абсолютно уверены, что вещество «знает», какой объем ему занять. Эта уверенность всегда подтверждается экспериментальной проверкой. Вещество всегда ведет себя однозначным образом.

Возьмем некоторое количество газа определенного химического состава, например азота, кислорода или воздуха, и заключим его в сосуд, объем которого можно изменять по своему усмотрению. Будем считать, что у нас имеется манометр, т. е. прибор для измерения давления газа, и термометр для измерения его температуры. Опыт показывает, что перечисленные макроскопические параметры полностью характеризуют газ как термодинамическую систему в том случае, когда этот газ состоит из нейтральных молекул, не обладающих собственным дипольным моментом.

В состоянии термодинамического равновесия не все эти параметры независимы, они связаны между собой уравнением состояния. Чтобы получить это уравнение, нужно воспользоваться

установленными на опыте закономерностями поведения газа при изменении каких-либо внешних параметров.

Газ в сосуде - простая термодинамическая система. Примем сначала, что ни количество газа, ни его химический состав во время опыта не меняются, так что речь пойдет только о трех макроскопических параметрах - давлении объеме V и температуре Для установления связывающих эти параметры закономерностей удобно зафиксировать значение одного из параметров и следить за изменениями двух других. Будем считать, что вызываемые нами изменения в газе происходят настолько медленно, что в любой момент времени макроскопические параметры характеризующие весь газ в состоянии термодинамического равновесия, имеют вполне определенные значения.

Изопроцессы. Как уже отмечалось, из любого неравновесного состояния термодинамическая система приходит в состояние равновесия за некоторое время - время релаксации. Чтобы при происходящих в системе изменениях макроскопические параметры имели вполне определенные значения, характерное время этих изменений должно быть много больше времени релаксации. Это условие накладывает ограничения на допустимую скорость процесса в газе, при котором сохраняют смысл его макроскопические параметры.

Процессы, протекающие при неизменном значении одного из параметров, принято называть изопроцессами. Так, процесс, происходящий при постоянной температуре, называется изотермическим, при постоянном объеме - изохорическим (изохорным), при постоянном давлении - изобарическим (изобарным).

Закон Бойля-Мариотта. Исторически первым в газе был экспериментально изучен изотермический процесс. Английский физик Р. Бойль и независимо от него французский физик Э. Мариотт установили закон изменения объема при изменении давления: для данного количества любого газа при неизменной температуре объем обратно пропорционален давлению. Обычно закон Бойля-Мариотта записывают в виде

Для поддержания постоянной температуры исследуемый газ должен находиться в хорошем тепловом контакте с окружающей средой, имеющей неизменную температуру. В этом случае говорят, что газ находится в контакте с термостатом - большим тепловым резервуаром, на состояние которого не влияют любые изменения, происходящие с исследуемым газом.

Закон Бойля-Мариотта хорошо выполняется для всех газов и их смесей в широком диапазоне температур и давлений. Отклонения от

этого закона становятся существенными лишь при давлениях, в несколько сотен раз превышающих атмосферное, и при достаточно низких температурах.

Проверить справедливость закона Бойля-Мариотта можно совсем простыми средствами. Для этого достаточно иметь запаянную с одного конца стеклянную трубку, в которой столбик ртути закрывает некоторое количество воздуха (трубка Мельде). Объем воздуха можно измерять линейкой по длине воздушного столба в трубке (рис. 45), а о давлении можно судить по высоте столбика ртути при разных ориентациях трубки в поле тяжести.

Для наглядного изображения изменений состояния газа и происходящих с ним процессов удобно использовать так называемые -диаграммы, где по оси абсцисс откладываются значения объема, а по оси ординат - давления. Кривая на -диаграмме, соответствующая изотермическому процессу, называется изотермой.

Рис. 45. Простейший прибор для проверки закона Бойля-Мариотта (трубка Мельде)

Рис. 46. Изотермы газа на -диаграмме

Как следует из закона Бойля-Мариотта, газовые изотермы представляют собой гиперболы (рис. 46). Чем выше температура, тем дальше от координатных осей расположена соответствующая изотерма.

Закон Шарля. Зависимость давления газа от температуры при неизменном объеме была экспериментально установлена французским физиком Ж. Шарлем. Согласно закону Шарля, давление газа при постоянном объеме линейно зависит от температуры:

где - давление газа при О °С. Оказывается, что температурный коэффициент давления а одинаков для всех газов и равен

Закон Гей-Люссака. Аналогичный вид имеет и зависимость объема газа от температуры при неизменном давлении. Это было установлено на опыте французским физиком Гей-Люссаком, который нашел, что температурный коэффициент расширения одинаков для всех газов. Значение этого коэффициента оказалось таким же, как и коэффициента а в законе Шарля. Таким образом, закон Гей-Люссака можно записать в виде

где - объем газа при О °С.

Совпадение температурных коэффициентов в законах Шарля и Гей-Люссака не случайно и свидетельствует о том, что эти устанавливаемые на опыте газовые законы не являются независимыми. Ниже мы подробнее остановимся на этом.

Газовый термометр. Тот факт, что выражаемая законами Шарля и Гей-Люссака зависимость давления или объема от температуры одинакова для всех газов, делает особенно удобным выбор газа в качестве термометрического тела. Хотя на практике использовать газовые термометры в силу их громоздкости и тепловой инерционности неудобно, именно по ним производится градуировка других термометров, более удобных для практических применений.

Шкала Кельвина. Зависимость давления или объема от температуры в законах Шарля и Гей-Люссака станет еще проще, если перейти к новой температурной шкале, потребовав, чтобы линейная зависимость превратилась в прямую пропорциональность.

Изобразив выражаемую формулой (3) зависимость объема газа от температуры (рис. 47) и продолжив график влево до пересечения с осью температуры, легко убедиться, что продолжение графика пересекает ось Гпри значении температуры, равном поскольку Именно в эту точку нужно поместить начало новой температурной шкалы, чтобы можно было записать уравнения (2) и (3) как прямую пропорциональность. Эту точку называют абсолютным нулем температуры. Масштаб новой шкалы, т. е. единица измерения температуры, выбирается так же, как и в шкале Цельсия. На новой температурной шкале нулю градусов Цельсия соответствует температура градуса (точнее 273,15), а любая другая температура Т связана с соответствующей температурой по шкале Цельсия соотношением

Введенная здесь температурная шкала называется шкалой Кельвина, а единица измерения, совпадающая с градусом шкалы Цельсия, называется кельвином и обозначается буквой К. Иногда эта шкала называется Международной практической шкалой температуры.

При использовании температурной шкалы Кельвина график закона Гей-Люссака принимает вид, показанный на рис. 48, а формулы (2) и (3) можно записать в виде

Рис. 47. Выражаемая законом Гей-Люссака зависимость объема газа от температуры при постоянном давлении

Рис. 48. График закона Гей-Люссака в температурной шкале Кельвина

Коэффициент пропорциональности в (6) характеризует наклон графика на рис. 48.

Уравнение состояния газа. Экспериментальные газовые законы дают возможность установить уравнение состояния газа. Для этого достаточно воспользоваться любыми двумя из приведенных законов. Пусть некоторое количество газа находится в состоянии с объемом давлением и температурой Переведем его в другое (промежуточное) состояние, характеризуемое тем же значением температуры и некоторыми новыми значениями объема V и давления При изотермическом процессе выполняется закон Бойля- Мариотта, поэтому

Теперь переведем газ из промежуточного состояния в конечное состояние с тем же значением объема , что и в промежуточном состоянии, и некоторыми значениями давления и температуры При изохорическом процессе выполняется закон Шарля, поэтому

поскольку Подставляя в из (7) и учитывая, что окончательно получаем

Мы изменили все три макроскопических параметра и Т, и тем не менее соотношение (9) показывает, что для данного количества газа (числа молей комбинация параметров имеет одно и то же значение, в каком бы состоянии этот газ не находился. Это означает, что уравнение (9) представляет собой уравнение состояния газа. Его называют уравнением Клапейрона.

В приведенном выводе уравнения (9) не использовался закон Гей-Люссака. Однако легко видеть, что в нем содержатся все три газовых закона. Действительно, полагая в получаем для изобарического процесса соотношение что соответствует закону Гей-Люссака.

Уравнение Менделеева-Клапейрона. Возьмем один моль газа при нормальных условиях, т. е. при и нормальном атмосферном давлении . В соответствии с установленным на опыте законом Авогадро один моль любого газа (гелия, азота, кислорода и т. д.) занимает при нормальных условиях одинаковый объем литра. Поэтому для одного моля любого газа комбинация обозначаемая через и называемая универсальной газовой постоянной (или молярной газовой постоянной), имеет одно и то же значение:

С учетом (10) уравнение состояния одного моля любого газа можно записать в виде

Уравнение (11) легко обобщить для произвольного количества газа. Так как при тех же значениях температуры и давления молей газа занимают в раз больший объем, чем 1 моль, то

В таком виде уравнение состояния газа впервые было получено русским ученым Д. И. Менделеевым. Поэтому его называют уравнением Менделеева-Клапейрона.

Идеальный газ. Уравнение состояния газа (11) или (12) было получено на основе установленных на опыте газовых законов. Эти законы выполняются приближенно: условия их применимости

различны для разных газов. Например, для гелия они справедливы в более широком диапазоне температур и давлений, чем для углекислого газа. Приближенным является и уравнение состояния, полученное из приближенных газовых законов.

Введем в рассмотрение физическую модель - идеальный газ. Под этим будем понимать систему, для которой уравнение (11) или (12) является точным. Замечательной особенностью идеального газа является то, что его внутренняя энергия пропорциональна абсолютной температуре и не зависит от объема, занимаемого газом.

Как и во всех других случаях использования физических моделей, применимость модели идеального газа к тому или иному реальному газу зависит не только от свойств самого газа, но и от характера вопроса, на который требуется найти ответ. Такая модель не позволяет описать особенности поведения различных газов, но выявляет свойства, общие для всех газов.

С применением уравнения состояния идеального газа можно познакомиться на примере конкретных задач.

Задачи

1. В одном баллоне объемом находится азот при давлении . В другом баллоне объемом находится кислород при давлении Температура газов совпадает с температурой окружающей среды. Какое установится давление газов, если открыть кран трубки, соединяющей эти баллоны между собой?

Решение. После открывания крана газ из баллона с более высоким давлением будет поступать в другой баллон. В конце концов давление в баллонах выравняется, а газы перемешаются. Даже если в процессе перетекания газов температура изменилась, после установления теплового равновесия она снова сравняется с температурой окружающего воздуха.

Для решения задачи можно воспользоваться уравнением состояния идеального газа. Обозначив через количество газов в баллонах до открывания крана, имеем

В конечном состоянии смесь газов содержит молей, занимает объем и находится при давлении которое нужно определить. Применяя к смеси газов уравнение Менделеева-Клапейрона, имеем

Выражая из уравнений (13) и подставляя в (14), находим

В частном случае, когда исходные давления газов одинаковы, давление смеси после установления равновесия остается таким же. Интересен предельный случай соответствующий замене второго сосуда атмосферой. Из (15) при этом получаем где - давление атмосферы. Такой результат очевиден из общих соображений.

Обратим внимание на то, что выражаемый формулой (15) результат соответствует тому, что давление смеси газов равно сумме парциальных давлений каждого из газов, т. е. давлений, которые имел бы каждый из газов, занимая при той же температуре весь объем. Действительно, парциальные давления каждого газа можно найти с помощью закона Бойля-Мариотта:

Видно, что полное давление равное сумме парциальных давлений выражается формулой (15). Утверждение, что давление смеси химически невзаимодействующих газов равно сумме парциальных давлений, называется законом Дальтона.

2. Истопив печь, в дачном домике температуру воздуха повысили от 0 до Как при этом изменилась плотность воздуха?

Решение. Ясно, что объем помещения при протапливании печи не изменился, так как тепловым расширением стен можно пренебречь. Если бы мы нагревали воздух при неизменном объеме V в закрытом сосуде, его давление возросло бы, но плотность осталась бы неизменной. Но дачный домик не герметичен, поэтому неизменным остается давление воздуха, равное наружному атмосферному давлению. Ясно, что при повышении температуры Т должна измениться масса воздуха в помещении: какая-то его часть должна выйти через щели наружу. перепишем (19) следующим образом:

Полагая для оценки получаем Приведенная оценка показывает, что с помощью этого очень простого устройства можно обнаружить изменение температуры вплоть до 0,01 К, так как легко заменить изменение положения столбика на 1 мм.

Что такое время релаксации для термодинамической системы?

Какие ограничения должны быть наложены на скорость протекания процессов в газе, чтобы в любой момент времени имели смысл макроскопические параметры описывающие газ в состоянии равновесия?

Чем определяется числовое значение константы в правой части уравнения закона Бойля-Мариотта (1)?

Что имеют в виду, когда говорят, что изучаемая система находится в контакте с термостатом?

Предложите способ проверки закона Бойля-Мариотта с помощью описанного в тексте прибора (см. рис. 45).

Какие преимущества дает выбор газа в качестве термометрического тела?

Как связан выбор начала отсчета температур в шкале Кельвина со значением температурного коэффициента расширения газа?

Как устанавливается связь температур, измеренных по шкале Цельсия и шкале Кельвина?

Выведите уравнение состояния газа, используя законы Бойля-Мариотта и Гей-Люссака.

Уравнение Клапейрона было получено с использованием только двух газовых законов, однако содержит в себе все три закона. Как это связано с тем фактом, что у газов температурные коэффициенты давления и объема одинаковы?

Что такое универсальная газовая постоянная? Как она связана с законом Авогадро?

Какую физическую систему называют идеальным газом? Чем определяются условия применимости этой модели? От чего зависит внутренняя энергия идеального газа?

Можно ли объяснить установленный на опыте закон Дальтона для смеси газов, опираясь на уравнение Менделеева-Клапейрона?

Как изменится чувствительность к изменениям температур простого устройства, описанного в задаче 3, если верхнее отверстие трубки заткнуть?

УРАВНЕНИЕ СОСТОЯНИЯ -уравнение, к-рое связывает давление р , объём V и абс. темп-ру Т физически однородной системы в состоянии термодинамического равновесия: f (p , V , Т ) = 0. Это ур-ние наз. термическим У. с., в отличие от калорического У. с., определяющего внутр. энергию U системы как ф-цию к--л. двух из трёх параметров р, V, Т . Термическое У. с. позволяет выразить давление через объём и темп-ру, p=p(V, Т) , и определить элементарную работу при бесконечно малом расширении системы . У. с. является необходимым дополнением к термодинамич. законам, к-рое делает возможным их применение к реальным веществам. Оно не может быть выведено с помощью одних только законов , а определяется из опыта или рассчитывается теоретически на основе представлений о строении вещества методами статистич. . Из первого начала термодинамики следует лишь существование калорич. У. с., а из второго начала термодинамики - связь между калорическим и термическим У. с.:

где а и b - постоянные, зависящие от природы газа и учитывающие влияние сил межмолекулярного притяжения и конечность объёма молекул; вириальное У. с. для неидеального газа:

где В (Т), С (Т), ... - 2-й, 3-й и т. д. вириальные коэф., зависящие от сил межмолекулярного взаимодействия. Вириальное У. с. позволяет объяснить многочисл. эксперим. результаты на основе простых моделей межмолекулярного взаимодействия в газах. Предложены также разл. эмпирич. У. с., основанные на эксперим. данных о теплоёмкости и сжимаемости газов. У. с. неидеальных газов указывают на существование критич. точки (с параметрами p к, V K , T к), в к-рой газообразная и жидкая фазы становятся идентичными. Если У. с. представить в виде приведённого У. с., то есть в безразмерных переменных р/р к, V /V K , Т/ Т к , то при не слишком низких темп-pax это ур-ние мало меняется для разл. веществ (закон соответственных состояний),

Для жидкостей из-за сложности учёта всех особенностей межмолекулярного взаимодействия пока не удалось получить общее теоретическое У. с. Ур-ние Ван-дер-Ваальса и его модификации, хотя и применяют для качеств, оценки поведения жидкостей, но по существу оно неприменимо ниже критич. точки, когда возможно сосуществование жидкой и газообразной фаз. У. с., хорошо описывающее свойства ряда простых жидкостей, можно получить из приближённых теорий жидкости. Зная распределение вероятностей взаимного расположения молекул (парной кор-реляц. ф-ции; см. Жидкость ),можно в принципе вычислить У. с. жидкости, однако эта задача сложна и полностью не решена даже с помощью ЭВМ.

Для получения У. с. твёрдых тел используют теорию колебаний кристаллической решётки , однако универсальное У. с. для твёрдых тел не получено.

Для магн. сред элементарная работа при равна

где М -магн. момент вещества, H -напряжённость магн. поля. Следовательно, зависимость М-М(Н,Т )представляет собой магнитное У. с. Для элементарная работа , где Р -поляризация, Е -напряжённость электрич. поля, и У. с. имеет вид Р=Р(Е, Т ).

Лит.: Майер Дж., Гепперт-Майер М., Статистическая механика, пер. с англ., 2 изд., М., 1980; Рид Р., Праусниц Дж., Шервуд Т., Свойства газов и жидкостей, пер. с англ., 3 изд., Л., 1982; Мейсон Э., Сперлинг Т., Вириальное уравнение состояния, пер. с англ., М., 1972; Исихара А., Статистическая физика, пер. с англ., М., 1973; Ашкрофт Н., Мер мин Н., Физика твердого тела, пер. с англ., т. 1-2, М., 1979. Д. Н. Зубарев .


УРАВНЕНИЯ СОСТОЯНИЯ , ур-ния, выражающие связь между физически однородной системы при термодинамич. равновесии. Термическое У.с. связывает р с объемом V и температурой T, а для - также с составом (молярными долями компонентов). Калорическое У. с. вьюажает внутр. энергию системы как ф-цию V, T и состава. Обычно под У. с., если специально не оговаривается, подразумевают термич. У. с. Из него можно непосредственно получить коэф. термич. расширения, коэф. изотермич. сжатия, термич. коэф. (упругости). У. с. является необходимым дополнением к термодинамич. законам. Пользуясь У. с., можно раскрыть зависимость термодинамич. ф-ций от V и р, проинтегрировать дифференц. термодинамич. соотношения, рассчитать (фугитивносги) , через которые обычно записывают условия . устанавливает связь между У. с. и любым из системы, выраженным в виде ф-ции своих естественных переменных. Напр., если известна (свободная энергия) F как ф-ция T и V, то У. с. не может быть получено с помощью одних только законов , оно определяется из опыта или выводится методами статистич. физики. Последняя задача очень сложная и м. б. решена лишь для упрощенных моделей системы, напр, для . У. с., применяемые для реальных систем, имеют эмпирич. или полуэмпирич. характер. Ниже рассмотрены некоторые наиб, известные и перспективные У. с.

Для неполярных и слабо полярных веществ ур-ние БВР дает очень точные результаты. Для индивидуального вещества оно содержит восемь подгоночных параметров, для смеси дополнительно вводятся параметры смешанного ("бинарного") взаимодействия. Оценка большого числа подгоночных параметров - задача очень сложная, требующая многочисленных и разнообразных эксперим. данных. Параметры ур-ния БВР известны лишь для неск. десятков веществ, главным образом и неорг. . Модификации ур-ния, направленные, в частности, на повышение точности описания свойств конкретных веществ, содержат еще большее число подгоночных параметров. Несмотря на это, добиться удовлетворит, результатов для полярных веществ не всегда удается. Усложненность формы затрудняет использование У. с. этого типа при расчетах процессов , когда необходимо выполнять многократную оценку компонентов, объема и энтальпии системы.

При описании смесей веществ эмпирич. постоянные У. с. считаются зависящими от состава. Для кубич. У. с. ван-дер-ва-альсового типа общеприняты квадратичные правила , согласно которым постоянные а и b для смеси определяют из соотношений:

где x i , x j - молярные доли компонентов, величины a ij и b ij связывают с постоянными для индивидуальных веществ a ii , a jj и b ii , b jj согласно комбинационным правилам:

a ij = (a ii a jj) 1/2 (1-k ij); 6 ij = (b ii +b jj)/2,

где k ij - подгоночные параметры смешанного взаимод., определяемые по эксперим. данным. Однако квадратичные правила не позволяют получить удовлетворит, результаты для т. наз. асимметричных систем, компоненты которых сильно отличаются по полярности и мол. размерам, напр, для смесей с .

M. Гурон и Дж. Видал в 1979 сформулировали правила нового типа, опирающиеся на модели локального состава, которые успешно передают асимметрию концснтрац. зависимостей избыточного потенциала Гиббса G E для жидких смесей и позволяют существенно улучшить описание . Суть подхода состоит в том, что приравнивают величины G E жидкого раствора, получаемые из У. с. и рассчитываемые согласно выбранной модели локального состава [ур-ния Вильсона, NRTL (Non-Random Two Liquids equation), UNIQAC (UNIversal QUAsi-Chemical equation), UNIFAC (UNIque Functional group Activity Coefficients model); CM. неэлектролитов]. Это направление интенсивно развивается.

Многие двухпараметрич. У. с. (Ван-дер-Ваальса, вириаль-ное с третьим вириальным коэф. и др.) можно представить в виде приведенного У. с.:

f(p пр, Т пр, V пр)= 0,

где p пр = р/р крит, Т пр =Т/Т крит, V пр = V/V крит - состояния. В-ва с одинаковыми значениями р пр и Т пр имеют одинаковый приведенный объем V np ; совпадают также факторы Z = pV/RT, коэф. и некоторые др. термодинамич. ф-ции (см. Соответственных состояний закон). Более общий подход, который позволяет расширить круг рассматриваемых веществ, связан с введением в приведенное У. с. дополнит, параметров. Наиб, простые среди них - фактор критич. Z кpит = р крит V кpит /RT кpит. и ацентрич. фактор w= -Ig p пр -1 (при Т пр = 0,7). Ацентрич. фактор является показателем несферичности поля межмол. сил данного вещества (для он близок к нулю).

К. Питцер предложил пользоваться для расчета фактора линейным разложением

Z(T кpит, р крит) = Z 0 (T кpит, р крит)+ wZ"(T кpит, р крит),

где Z 0 означает фактор "простой" , напр, a Z" характеризует отклонения от модели простой (см. Жидкость). Предложены , определяющие зависимости Z°(T кpит, р крит)

и Z"(T кpит, р крит). Наиб, известны корреляции Ли и Кесслера, в которых зависимость Z 0 от T кpит и р крит передается с помощью ур-ния БВР для . Зависимость Z" от T кpит и р крит установлена при выборе в качестве "эталонной" н-октана. Принимается, что Z"(T кpит, р крит) = /w*, где w* - фактор ацентричности н-октана, Z* - его фактор согласно ур-нию БВР. Разработана методика применения ур-ния Ли-Кесслера и для жидких смесей. Это У. с. наиб, точно описывает термодинамич. свойства и для неполярных веществ и смесей.

Наряду с вышеупомянутыми эмпирич. У. с. важное значение приобрели ур-ния, обладающие возможностями учета особенностей структуры и межмол. взаимод. Они опираются на положения статистич. теории и результаты численных экспериментов для модельных систем. Согласно мол.-статистич. трактовке, ур-ние Ван-дер-Ваальса описывает флюид твердых притягивающихся сфер, рассматриваемый в приближении среднею поля. В новых ур-ниях уточняется прежде всего член ур-ния Ван-дер-Ваальса, обусловливаемый силами межчастичного отталкивания. Значительно точнее приближение Кариахана- Старлинга, опирающееся на результаты численного флюида твердых сфер в широком диапазоне плотностей. Оно используется во многих У. с., однако большие возможности имеют У. с. модельных систем твердых частиц, в которых учитывается асимметрия мол. формы. Напр., в ур-нии BACK (Boublik-Alder-Chen-Kre-glewski) для оценки вклада сил отталкивания служит У. с. флюида твердых частиц, имеющих форму гантелей. Для учета вклада сил притяжения употребляют выражение, аппроксимирующее результаты, полученные методом мол. динамики для флюида с межчастичными потенциалами типа прямоугольной ямы (см. Молекулярная динамика). Ур-ние BACK и его аналоги позволяют с достаточной точностью описывать смеси, не содержащие высококипящих компонентов.

Особенность описания смесей высококипящих орг. B-B -необходимость учета дополнительной вращательно-колебат. степени свободы, связанной со смещениями сегментов молекул-цепочек (напр., C 8). Для этих систем наиб, распространение получило ур-ние PHCT (Perturbed Hard Chain Theory), предложенное Дж. Прауснитцем и M. До-нахью в 1978. Индивидуальное вещество характеризуется тремя эмпирич. параметрами в ур-нии PHCT. Комбинационные правила для смеси содержат один параметр смешанного взаимодействия. Дальнейшее усовершенствование ур-ния PHCT основано на замене потенциала прямоугольной ямы, описывающей притяжение , потенциалом Леннард-Джонса [ур-ние PSCT (Perturbed Soft Chain Theory)] и на учете межмол. сил [ур-ние PACT (Perturbed Anisotropic Chain Theory)]. Последнее ур-ние хорошо описывает в системах с полярными компонентами даже без использования подгоночных параметров парного взаимодействия.