Карточки примеры сложение и вычитание круглых десятков. Урок "сложение и вычитание круглых десятков". VI. Занимательный материал

Прошлый видеоматериал был посвящен линейным уравнениям, содержащим две переменные. Мы рассмотрели основные свойства подобных выражений, возможности их преобразования и решения, а также графическое отображение зависимости между двумя переменными.

Известно, что подавляющее большинство этих уравнений имеют множество ответов, представленных всегда парой чисел. Эта пара - значения х и у. Рассмотрим возможные варианты корней уравнения следующего вида:

Очевидно, что корнями данного уравнения может быть пара (4, 6):

Или же дроби 1/5 и 1/3:

5(1/5) - 3(1/3) = 2

В обеих случаях получается верное равенство, значит обе пары корней приемлемы в качестве решения представляемого уравнения. Но при этом одна пара является дробями, а вторая представлена целыми числами. Корни уравнений с двумя переменными, имеющие значения в целых числах именуются цельно численными.
Довольно часто в математике встречаются задачи, требующие именно целочисленные решения подобных уравнений. С другой стороны, некоторые вариации, вроде:

Не имеют цельно численных решений вообще. Так как при любых целых значениях х и у получится целое общее выражение левой части (2х + 3у), которое никак не может быть равно дроби - то есть, нарушится принцип сохранения равенства.
Рассмотрим возможные решения уравнения:

Переведем его в форму зависимости, используя перенос через знак равенства и тождественные преобразования:

Вполне очевидно, что сохраняется равенство вида:

Где n - любое натуральное число, которое вполне может быть целым по значению. То есть, уравнение 7х - у = -1 обладает множеством целочисленных решений. Проверим любые целые числа в качестве х:

х = -3; у = -26

Нам уже известна общая абстрактная формула для определения любого линейного уравнения с двумя переменными:

Где х и у - переменные, а и b - коэффициенты при переменных, а с - свободный член. Любое уравнение, подобное линейным выражениям с х и у, путем равносильных преобразований можно привести к такому абстрактному виду. Подробное изучение общей формулы позволяет с легкостью выявить некоторые закономерности с точки зрения наличия целочисленных решений. Итак, если задано некое уравнение вида:

При котором свободный член является дробью, то корнями уравнения никак не могут быть цельно численные выражения. Сумма или разность двух целых чисел по закону элементарной алгебры не может быть равна дробному выражению.

Из-за большого количества возможных решений, корни уравнений с двумя переменными иногда имеют вид не пары отдельных чисел, а пары двух индивидуальных формул - для х, и для у. Для примера, решим уравнение:

Для этого, нам необходимо совершить ряд преобразований. Разобьем одночлен 20х на тождественную сумму 18х + 2х:

20х = 18х+ 2х

18х + 2х + 3у = 10

Группируем одночлены, имеющие кратные числовые коэффициенты. Стоит отметить, что переменную х необходимо разбивать на сумму так, что бы получился х с коэффициентом максимально большим и кратным при этом для числового коэффициента переменной у. Так как в нашем примере при у стоит тройка, то х мы разбиваем с максимально допустимым коэффициентом, кратным трем. После группировки выносим общий кратный множитель:

18х + 2х + 3у = 10

18х + 3у + 2х = 10

3(6х + у) + 2х = 10

Пусть выражение в скобках (6х + у) равно некой переменной с, тогда:

3(6х + у) + 2х = 10

Разбиваем значение переменной с по такому же принципу, как разбивали коэффициент при х. При этом нам необходимо подобрать некое число, которое будет кратно двойке (значению при 2х), но не больше трех. Очевидно, что это будет так:

2с + с + 2х =10

Проводим тождественные изменения:

2с + с + 2х =10

2(с + х) + с = 10

Обозначим содержимое скобок, как n, тогда:

2(с + х) + с = 10

Подставляем получившееся равенство вместо с:

3(10 - 2n) + 2х = 10

И решаем полученное уравнение относительно переменной х:

3(10 - 2n) + 2х = 10

30 - 6n + 2х = 10

2х = 10 + 6n - 30

То уместно записать:

6х + у = n - х

Подставляем известную нам формулу для х, что бы вычислить у:

6х + у = n - х

6(- 10 + 3n) + у = n - (- 10 + 3n)

60 + 18n + у = n + 10 - 3n

у = n + 10 - 3n + 60 - 18n

Корнями уравнения 20х + 3у = 10 являются два выражения вида:

Где n - любое целое число - 0, 1, 2 и т.д. Таким образом, чтобы описать все многообразие возможных целочисленных решений, проще всего вычислить некоторые формулы для быстрого расчета х и у. Подставляя любые выражения n в эти формулы, можно с легкостью получить искомую пару чисел.

1.3 Способы решения уравнений

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

1. Способ перебора вариантов.

2. Алгоритм Евклида.

3. Цепные дроби.

4. Метод разложения на множители.

5. Решение уравнений в целых числах как квадратных относительно какой-либо переменной.

6. Метод остатков.

7. Метод бесконечного спуска.

Глава 2. Применение способов решения уравнений

1. Примеры решения уравнений.

2.1 Алгоритм Евклида.

Задача 1 . Решить уравнение в целых числах 407х – 2816y = 33.

Воспользуемся составленным алгоритмом.

1. Используя алгоритм Евклида, найдем наибольший общий делитель чисел 407 и 2816:

2816 = 407·6 + 374;

407 = 374·1 + 33;

374 = 33·11 + 11;

Следовательно (407,2816) = 11, причем 33 делится на 11

2. Разделим обе части первоначального уравнения на 11, получим уравнение 37х – 256y = 3, причем (37, 256) = 1

3. С помощью алгоритма Евклида найдем линейное представление числа 1 через числа 37 и 256.

256 = 37·6 + 34;

Выразим 1 из последнего равенства, затем последовательно поднимаясь по равенствам будем выражать 3; 34 и полученные выражения подставим в выражение для 1.

1 = 34 – 3·11 = 34 – (37 – 34·1) ·11 = 34·12 – 37·11 = (256 – 37·6) ·12 – 37·11 =

– 83·37 – 256·(–12)

Таким образом, 37·(– 83) – 256·(–12) = 1, следовательно пара чисел х 0 = – 83 и у 0 = – 12 есть решение уравнения 37х – 256y = 3.

4. Запишем общую формулу решений первоначального уравнения

где t - любое целое число.

2.2 Способ перебора вариантов.

Задача 2. В клетке сидят кролики и фазаны, всего у них 18 ног. Узнать, сколько в клетке тех и других?

Решение: Составляется уравнение с двумя неизвестными переменными, в котором х – число кроликов, у – число фазанов:

4х + 2у = 18, или 2х + у = 9.

Выразим у через х : у = 9 – 2х.

х 1 2 3 4
у 7 5 3 1

Таким образом, задача имеет четыре решения.

Ответ: (1; 7), (2; 5), (3; 3), (4; 1).

2.3 Метод разложения на множители.

Перебор вариантов при нахождении натуральных решений уравнения с двумя переменными оказывается весьма трудоемким. Кроме того, если уравнение имеет целые решения, то перебрать их невозможно, так как таких решений бесконечное множество. Поэтому покажем еще один прием - метод разложения на множители.

Задача 3. Решить уравнение в целых числах y 3 - x 3 = 91.

Решение. 1) Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

(y - x )(y 2 + xy + x 2) = 91……………………….(1)

2) Выпишем все делители числа 91: ± 1; ± 7; ± 13; ± 91

3) Проводим исследование. Заметим, что для любых целых x и y число

y 2 + yx + x 2 ≥ y 2 - 2|y ||x | + x 2 = (|y | - |x |) 2 ≥ 0,

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда уравнение (1) равносильно совокупности систем уравнений:

; ; ;

4) Решив системы, получим: первая система имеет решения (5; 6), (-6; -5); третья (-3; 4),(-4;3); вторая и четвертая решений в целых числах не имеют.

Ответ: уравнение (1) имеет четыре решения (5; 6); (-6; -5); (-3; 4); (-4;3).

Задача 4. Найти все пары натуральных чисел, удовлетворяющих уравнению

Решение. Разложим левую часть уравнения на множители и запишем уравнение в виде

.

Т.к. делителями числа 69 являются числа 1, 3, 23 и 69, то 69 можно получить двумя способами: 69=1·69 и 69=3·23. Учитывая, что

, получим две системы уравнений, решив которые мы сможем найти искомые числа: или .

Первая система имеет решение

, а вторая система имеет решение .

Ответ:

.

Задача 5. Решить уравнение в целых числах:

.

Решение. Запишем уравнение в виде

.

Разложим левую часть уравнения на множители. Получим

.

Произведение двух целых чисел может равняться 1 только в двух случаях: если оба они равны 1 или -1. Получим две системы:

или .

Первая система имеет решение х=2, у=2, а вторая система имеет решение х=0, у=0.

Ответ:

.

Задача 6. Решить в целых числах уравнение

Решение . Запишем данное уравнение в виде

.

Разложим левую часть уравнения на множители способом группировки, получим

.

Произведение двух целых чисел может равняться 7 в следующих случаях:

7=1· 7=7·1=-1·(-7)=-7·(-1).Таким образом, получим четыре системы:

или , или , или .

Решением первой системы является пара чисел х = - 5, у = - 6. Решая вторую систему, получим х = 13, у = 6.Для третьей системы решением являются числа х = 5, у = 6. Четвёртая система имеет решение х = - 13, у = - 6.

.

Задача 7. Доказать, что уравнение (x - y ) 3 + (y - z ) 3 + (z - x ) 3 = 30 не

  1. Уравнения первой степени с двумя неизвестными
  1. Примеры уравнений второй степени с тремя неизвестными
  1. Общий случай уравнения второй степени с двумя неизвестными

Р А З Р А Б О Т К А П Р О Г Р А М М

  1. Программа №1 (уравнения с одним неизвестным)

ВВЕДЕНИЕ

Мой курсовой проект посвящен одному из наиболее интересных разделов теории чисел - решению уравнений в целых числах.

Решение в целых числах алгебраических уравнений с целыми коэффициентами более чем с одним неизвестным представляет собой одну из труднейших проблем теории чисел.

Проблема решения уравнений в целых числах решена до конца только для уравнений второй степени с двумя неизвестными. Отметим, что для уравнений любой степени с одним неизвестным она не представляет сколько-нибудь существенного интереса, так как эта задача может быть решена с помощью конечного числа проб. Для уравнений выше второй степени с двумя или более неизвестными весьма трудна не только задача нахождения всех решений в целых числах, но даже и более простая задача установления существования конечного или бесконечного множества таких решений.

В своем проекте я постаралась изложить некоторые основные результаты, полученные в теории; решения уравнений в целых числах. Теоремы, формулируемые в нем, снабжены доказательствами в тех случаях, когда эти доказательства достаточно просты.


1. УРАВНЕНИЯ С ОДНИМ НЕИЗВЕСТНЫМ

Рассмотрим уравнение первой степени с одним неизвестным

Пусть коэффициенты уравнения

и - целые числа. Ясно, что решение этого уравнения

будет целым числом только в том случае, когда

нацело делится на . Таким образом, уравнение (1) не всегда разрешимо в целых числах; так, например, из двух уравнений и первое имеет целое решение , а второе в целых числах неразрешимо.

С тем же обстоятельством мы встречаемся и в случае уравнений, степень которых выше первой: квадратное уравнение

имеет целые решения , ; уравнение в целых числах неразрешимо, так как его корни ,иррациональны.

Вопрос о нахождении целых корней уравнения n-ой степени с целыми коэффициентами

(2)

решается легко. Действительно, пусть

- целый корень этого уравнения. Тогда
, .

Из последнего равенства видно, что

делится без остатка; следовательно, каждый целый корень уравнения (2) является делителем свободного члена уравнения. Для нахождения целых решений уравнения надо выбрать те из делителей , которые при подстановке в уравнение обращают его в тождество. Так, например, из чисел 1, -1, 2 и -2, представляющих собой все делители свободного члена уравнения
,

только -1 является корнем. Следовательно это уравнение, имеет единственный целый корень

. Тем же методом легко показать, что уравнение

в целых числах неразрешимо.

Значительно больший интерес представляет решение в целых числах уравнении с многими неизвестными.

2. УРАВНЕНИЯ ПЕРВОЙ СТЕПЕНИ С ДВУМЯ НЕИЗВЕСТНЫМИ

Рассмотрим уравнение первой степени с двумя неизвестными

, (3)
и - целые числа, отличные от нуля, а - произвольное целое. Будем считать, что коэффициенты и не имеют общих делителей, кроме единицы. Действительно, если общий наибольший делитель этих коэффициентов отличен от единицы, то справедливы равенства , ; уравнение (3) принимает вид

и может иметь целые решения только в том случае, когда

делится на . Таким образом, в случае - все коэффициенты уравнения (3) должны делиться нацело на , и, сокращая (3) на , придем к уравнению
,

коэффициенты которого

и взаимно просты.

Рассмотрим сначала случай, когда

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми , в честь древнегреческого математика , который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику . Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

    способ перебора вариантов;

    применение алгоритма Евклида;

    представление чисел в виде непрерывных (цепных) дробей;

    разложения на множители;

    решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

    метод остатков;

    метод бесконечного спуска.

Задачи с решениями

1. Решить в целых числах уравнение x 2 – xy – 2y 2 = 7.

Запишем уравнение в виде (x – 2y)(x + y) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2y = 7, x + y = 1;

2) x – 2y = 1, x + y = 7;

3) x – 2y = –7, x + y = –1;

4) x – 2y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

а) 20х + 12у = 2013;

б) 5х + 7у = 19;

в) 201х – 1999у = 12.

а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

Ответ: решений нет.

б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

x 0 = 1, y 0 = 2.

5x 0 + 7y 0 = 19,

5(х – x 0) + 7(у – y 0) = 0,

5(х – x 0) = –7(у – y 0).

Поскольку числа 5 и 7 взаимно простые, то

х – x 0 = 7k, у – y 0 = –5k.

Значит, общее решение:

х = 1 + 7k, у = 2 – 5k,

где k – произвольное целое число.

Ответ: (1+7k; 2–5k), где k – целое число.

в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел

x 0 = 1273·12 = 15276, y 0 = 128·12 = 1536

является решением уравнения 201х – 1999у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,

или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),

х = 1283 + 1999n, у = 129 + 201n, где n – целое число.

Ответ: (1283+1999n, 129+201n), где n – целое число.

3. Решить в целых числах уравнение:

а) x 3 + y 3 = 3333333;

б) x 3 + y 3 = 4(x 2 y + xy 2 + 1).

а) Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе ), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

б) Перепишем исходное уравнение в виде (x + y) 3 = 7(x 2 y + xy 2) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

а) в простых числах уравнение х 2 – 7х – 144 = у 2 – 25у;

б) в целых числах уравнение x + y = x 2 – xy + y 2 .

а) Решим данное уравнение как квадратное относительно переменной у. Получим

у = х + 9 или у = 16 – х.

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х имеем

2 х 16, 2 у 16.

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

б) Рассмотрим данное уравнение как квадратное уравнение относительно x:

x 2 – (y + 1)x + y 2 – y = 0.

Дискриминант этого уравнения равен –3y 2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x 2 + y 2 + z 2 = x 3 + y 3 + z 3 ?

Попробуем подбирать такие тройки, где у = –z. Тогда y 3 и z 3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид

x 2 + 2y 2 = x 3

или, иначе,

x 2 (x–1) = 2y 2 .

Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n 2 +1. Подставляя в x 2 (x–1) = 2y 2 такое число, после несложных преобразований получаем:

y = xn = n(2n 2 +1) = 2n 3 +n.

Все тройки, полученные таким образом, имеют вид (2n 2 +1; 2n 3 +n; –2n 3 – n).

Ответ: существует.

6. Найдите такие целые числа x, y, z, u, что x 2 + y 2 + z 2 + u 2 = 2xyzu.

Число x 2 + y 2 + z 2 + u 2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.

Если все четыре числа x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.

Если ровно два из чисел x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.

Поэтому все числа x, y, z, u чётны. Тогда можно записать, что

x = 2x 1 , y = 2y 1 , z = 2z 1 , u = 2u 1 ,

и исходное уравнение примет вид

x 1 2 + y 1 2 + z 1 2 + u 1 2 = 8x 1 y 1 z 1 u 1 .

Теперь заметим, что (2k + 1) 2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x 1 , y 1 , z 1 , u 1 нечётны, то x 1 2 + y 1 2 + z 1 2 + u 1 2 не делится на 8. А если ровно два из этих чисел нечётно, то x 1 2 + y 1 2 + z 1 2 + u 1 2 не делится даже на 4. Значит,

x 1 = 2x 2 , y 1 = 2y 2 , z 1 = 2z 2 , u 1 = 2u 2 ,

и мы получаем уравнение

x 2 2 + y 2 2 + z 2 2 + u 2 2 = 32x 2 y 2 z 2 u 2 .

Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2 n при всех натуральных n, что возможно лишь при x = y = z = u = 0.

Ответ: (0; 0; 0; 0).

7. Докажите, что уравнение

(х – у) 3 + (y – z) 3 + (z – x) 3 = 30

не имеет решений в целых числах.

Воспользуемся следующим тождеством:

(х – у) 3 + (y – z) 3 + (z – x) 3 = 3(х – у)(y – z)(z – x).

Тогда исходное уравнение можно записать в виде

(х – у)(y – z)(z – x) = 10.

Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде

Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.

8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у 2 .

Очевидно, что

если х = 1, то у 2 = 1,

если х = 3, то у 2 = 9.

Этим случаям соответствуют следующие пары чисел:

х 1 = 1, у 1 = 1;

х 2 = 1, у 2 = –1;

х 3 = 3, у 3 = 3;

х 4 = 3, у 4 = –3.

Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как

5! + 6! + . . . + х! = 10n,

можем записать, что

1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.

Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.

Ответ: (1; 1), (1; –1), (3; 3), (3; –3).

9. Решите следующую систему уравнений в натуральных числах:

a 3 – b 3 – c 3 = 3abc, a 2 = 2(b + c).

3abc > 0, то a 3 > b 3 + c 3 ;

таким образом имеем

Складывая эти неравенства, получим, что

С учётом последнего неравенства, из второго уравнения системы получаем, что

Но второе уравнение системы также показывает, что а – чётное число. Таким образом, а = 2, b = c = 1.

Ответ: (2; 1; 1)

10. Найти все пары целых чисел х и у, удовлетворяющих уравнению х 2 + х = у 4 + у 3 + у 2 + у.

Разложив на множители обе части данного уравнения, получим:

х(х + 1) = у(у + 1)(у 2 + 1),

х(х + 1) = (у 2 + у)(у 2 + 1)

Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:

х 1 = 0, у 1 = 0;

х 2 = 0, у 2 = –1;

х 3 = –1, у 3 = 0;

х 4 = –1, у 4 = –1.

Произведение (у 2 + у)(у 2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х 5 = 5, х 6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:

х 5 = 5, у 5 = 2;

х 6 = –6, у 6 = 2.

Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)

Задачи без решений

1. Решить в целых числах уравнение:

а) ху = х + у + 3;

б) х 2 + у 2 = х + у + 2.

2. Решить в целых числах уравнение:

а) х 3 + 21у 2 + 5 = 0;

б) 15х 2 – 7у 2 = 9.

3. Решить в натуральных числах уравнение:

а) 2 х + 1 = у 2 ;

б) 3·2 х + 1 = у 2 .

4. Доказать, что уравнение х 3 + 3у 3 + 9z 3 = 9xyz в рациональных числах имеет единственное решение

5. Доказать, что уравнение х 2 + 5 = у 3 в целых числах не имеет решений.

Задача 12.

Решите в целых числах 5х²+ 5у² + 8ху + 2у – 2у + 2 = 0 .

Решение.

Если попытаться решить данное уравнение методом разложения на множители, то это достаточно трудоёмкая работа, поэтому это уравнение можно решить более изящным методом. Рассмотрим уравнение, как квадратное относительн о х 5х²+(8у-2)х+5у²+2у +2=0 , х1,2 = (1 – 4у ±√(1 – 4у) ² - 5(5у² + 2у + 2))/5 = (1 – 4у ±-9(у + 1)²)/5.

Данное уравнение имеет решение тогда, когда дискриминант равен нулю, т.е. –9(у + 1) = 0 , отсюда у = -1 . Если у = -1 , то х =1 .

Ответ.

Задача 13.

Решите в целых числах 3(х² + ху + у²)= х + 8у

Решение.

Рассмотрим уравнение, как квадратное относительно х 3х ² + (3у - 1)х + 3у² - 8у = 0. Найдём дискриминант уравнения D = =(3у – 1) ² - 4 * 3(3у² - 8у) = 9у² - 6у + 1 – 36у² + 96у = -27у² + 90у + 1.

Данное уравн ение имеет корни, если D ³ 0 , т. е. –27у² + 90 у + 1³ 0

(-45 + √2052)/ (-27) £ у £ (-45 -√2052)/ (-27) (4)

Так как у Î Z , то условию (4) удовлетворяют только 0, 1, 2, 3 . Перебирая эти значения, получим, что уравнение в целых числах имеет решения (0; 0) и (1; 1) .

Ответ.

(0; 0) , (1; 1) .

Задача 14.

Решите уравнение 5х² - 2ху + 2у² - 2х – 2у + 1= 0.

Решение.

Рассмотрим данное уравнение как квадратное относительно х с коэффициентами, зависящими от у, 5х² - 2(у + 1)х + 2у² – 2у + 1= 0.

Найдём четверть дискриминанта D/4=(y+1)²-5(2y²-2y+1)=-(3y-2)² .

Отсюда следует, что уравнение имеет решение только тогда, когда -(3у – 2)² = 0 , отсюда следует у = ⅔, затем находим х = ⅓.

Ответ.

(⅓; ⅔).

Метод остатков.

Задача 15.

Решите в целых числах 3ª = 1 + у²

Решение.

Видно, что (0; 0) – решение данного уравнения. Докажем, что других решений нет.

Рассмотрим случаи:

1) х Î N, y Î N (5)

Если х Î N , то делится на 3 без остатка, а у² + 1 при делении на 3 даёт остаток либо 1 , либо 2 . Следовательно, равенство (5) при натуральных значениях х и у невозможно.

2)Если х – целое отрицательное число, y Î Z, тогда 0<3ª<1, а 1+у²³0 и равенство (5)также невозможно. Следовательно, (0; 0) – единственное решение.

Ответ.

Задача 16.

Докажите, что система уравнений

ì х² - у² = 7

î z² - 2y² = 1

не имеет решений в целых числах.

Решение.

Предположим, что система разрешена. Из второго уравнения z²=2у+1, т. е. z²– нечётноё число и z -нечётное, значит z=2m+1 . Тогда y²+2m²+2m , значит, у² - чётное числои у – чётное, y = 2n, n Î Z.

x²=8n³+7, т. е. х² - нечётное число и х - нечётное число, х=2k+1, k Î Z.

Подставим значения х и у в первое уравнение, получим 2(k² + k - 2n³) = 3, что невозможно, так как левая часть делится на 2 , а правая нет.

Значит, наше предположение неверно, т.е. система не имеет решений в целых числах.

Метод бесконечного спуска.

Решение уравнений методом бесконечного спуска проходит по следующей схеме: предположив, что уравнение имеет решения, мы строим некоторый бесконечный процесс, в то время, как по самому смыслу задачи этот процесс должен на чём–то кончаться.

Часто метод бесконечного спуска применяется в более простой форме. Предположив, что мы уже добрались до естественного конца, видим, что «остановиться» не можем.

Задача 17.

Решить в целых числах 29х + 13у + 56z = 17 (6)

Выразим неизвестное, коэффициент при котором наименьший, через остальные неизвестные.

у=(17-29х-56z)/13=(1-2x-4z)+(4-3x-4z)/13 (7)

Обозначим (4-3x-4z)/13 = t1 (8)

Из (7) следует, что t1 может принимать только целые значения. Из (8) имеем 13t1 + 3x + 4z = 14 (9)

Получим новое диофантово уравнение, но с меньшими, чем в (6) коэффициентами. Применим к (9) те же соображения: x=(4-13t1-4z)/3= =(1-4t1-z) + (1-t1-z)/3

(1-t1-z)/3 = t2 , t2 – целое, 3t2+t1+z = 1 (10)

В (10) коэффициент при z – неизвестном исходного уравнения равен 1 – это конечный пункт «спуска». Теперь последовательно выражаем z , x , y через t1 и t2 .

ì z = -t1 – 3t2 + 1

í x = 1 – 4t1 + t1 + 3t2 = 1 +t2 = -t1 + 4t2

î y = 1 + 6t1 – 8t2 + 4t1 + 12t2 – 4 + t1= 11t1 + 4t2 - 3

Итак,ì x = -3t1 + 4t2

í y = 11t1 + 4t2 - 3

î z = -t1 – 3t2 + 1

t1, t2 - любые целые числа – все целые решения уравнения (6)

Задача 18.

Решить в целых числах x³ - 3y³ - 9z³ = 0 (11)

Решение.

Видно, что левая часть уравнения (11) не поддаётся никаким преобразованиям. Поэтому исследуя характер целых чисел x³=3(y³-z³). Число кратно 3 , значит и число х кратно 3 , т. е. х = 3х1 (12) Подставим (12) в (11) 27х1³-3у³-9z³=0, 9x1³-y³-3z³=0 (13)

y³=3(3x1³-z³). Тогда у³ кратно 3 , значит и у кратно 3 , т. е. у=3у1 (14). Подставим (14) в (13) 9х1³ -27у1³ - 3z³=0 . Из этого уравнения следует, что кратно 3, а значит и z кратно 3 , т.е. z=3z1 .

Итак, оказалось, что числа, удовлетворяющие уравнению (11), кратны трём, и сколько раз мы не делили бы их на 3 , получаем числа, кратные трём. Единственное целое число, удовлетворяющее трём. Единственное целое число, удовлетворяющее этому условию, будет нуль, т. е. решение данного уравнения (0; 0; 0)