Что такое скорость звука? Скорость звука и ее измерение

Чем теплее вода, тем больше в ней скорость звука. При погружении на большую глубину скорость звука в воде также увеличивается. Километры в час (км/ч) - внесистемная единица измерения скорости.

А в 1996г была запущена первая версия сайта с мгновенными вычислениями. Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей, Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука.

Скорость звука в газах и парах

В многофазных средах из-за явлений неупругого поглощения энергии скорость звука, вообще говоря, зависит от частоты колебаний (то есть наблюдается дисперсия скорости). Например, оценка скорости упругих волн в двухфазной пористой среде может быть выполнена с применением уравнений теории Био-Николаевского. При достаточно высоких частотах (выше частоты Био) в такой среде возникают не только продольные и поперечные волны, но также и продольная волна II-рода.

В чистой воде скорость звука составляет около 1500 м/с (см. опыт Колладона-Штурма) и увеличивается с ростом температуры. Объект, движущийся со скоростью 1 км/ч, преодолевает за один час один километр. Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите, пожалуйста.

Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. На земле прохождение ударной волны воспринимается как хлопок, похожий на звук выстрела. Превысив скорость звука, самолёт проходит сквозь эту область повышенной плотности воздуха, как бы прокалывает её – преодолевает звуковой барьер. Долгое время преодоление звукового барьера представлялось серьёзной проблемой в развитии авиации.

Маха числах полёта M(∞), несколько превышающих критическое число M*. Причина состоит в том, что при числах M(∞) > M* наступает волновой кризис, сопровождающийся появлением волнового сопротивления. 1) ворота в крепостях.

Почему в космосе темно? Правда ли, что звезды падают? Скорость, число Маха которой превышает 5, называется гиперзвуковой. Сверхзвуковая скорость - скорость перемещения тела (газового потока), превышающая скорость распространения звука в идентичных условиях.

Смотреть что такое «СВЕРХЗВУКОВАЯ СКОРОСТЬ» в других словарях:

В твёрдых телах звук распространяется гораздо быстрее, чем в воде или воздухе. Волна в каком-то смысле движение нечто, распространяющееся в пространстве. Волна – это процесс перемещения в пространстве изменения состояния. Давайте представим себе, каким образом происходит распространение звуковых волн в пространстве. Эти слои сжимаются, что в свою очередь снова создает избыточное давление, влияющее на соседние слои воздуха.

Это явление использовано в ултразвуковой дефектоскопии металлов. Из таблицы видно, что с уменьшением длины волны уменьшаются размеры пороков в металле (раковин, иногородных вкраплений), которые могут быть обнаруженыпучком ультразвука.

Дело в том, что при движении на скоростях полета свыше 450 км/ч к обычному сопротивлению воздуха, которое пропорционально квадрату скорости, начинает добавляться и волновое сопротивление. Волновое сопротивление резко увеличивается при приближении скорости самолета к скорости звука, в несколько раз превышая сопротивление, связанное с трением и образованием вихрей.

Чему равна скорость звука?

Помимо скорости, волновое сопротивление напрямую зависит от формы тела. Так вот, стреловидное крыло заметно уменьшает именно волновое сопротивление. Дальнейшее увеличение угла атаки при маневрировании ведет к распространению срыва потока по всему крылу, потери управляемости и сваливании самолета в штопор. Крыло с обратной стреловидностью частично лишено этого недостатка.

При создании крыла обратной стреловидности возникли сложные проблемы, связанные в первую очередь с упругой положительной дивергенцией (а попросту - со скручиванием и последующим разрушением крыла). Продуваемые в сверхзвуковых трубах крылья из алюминиевых и даже стальных сплавов разрушались. Лишь в 1980-х годах появились композитные материалы, позволяющие бороться со скручиванием с помощью специально ориентированной намотки углепластиковых волокон.

Для распространения звука необходима упругая среда. В вакууме звуковые волны распро­страняться не могут, так как там нечему колебаться. При температуре 20 °С она равна 343 м/с, т. е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из автомата Калашни­кова.

В разных газах звук распространяется с разной скоростью. Введите значение единицы (скорость звука в воздухе), которое вы хотите пересчитать. В областях современных технологий и бизнеса выигрывает тот, кто успевает делать все быстро.

Звук - одна из составляющих нашей жизни, и человек слышит его везде. Чтобы более подробно рассмотреть это явление, вначале надо разобраться с самим понятием. Для этого надо обратиться к энциклопедии, где написано, что «звук - это упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания». Говоря более простым языком - это слышимые колебания в какой-либо среде. От того, какая она, и зависят основные характеристики звука. В первую очередь - скорость распространения, например, в воде отличается от другой среды.

Любой звуковой аналог обладает определенными свойствами (физическими особенностями) и качествами (отражение этих признаков в человеческих ощущениях). Например, продолжительность-длительность, частота-высота, состав-тембр и так далее.

Скорость звука в воде значительно выше, чем, допустим, в воздухе. Следовательно, распространяется он быстрее и намного дальше слышен. Происходит такое из-за высокой молекулярной плотности водной среды. Она в 800 раз плотнее, чем воздух и сталь. Отсюда следует, что распространение звука во многом зависит от среды. Обратимся к конкретным цифрам. Так, скорость звука в воде равняется 1430м/с, в воздухе - 331,5м/с.

Низкочастотный звук, к примеру, шум, который производит работающий судовой двигатель, всегда слышится несколько раньше, чем судно появляется в зоне видимости. Его скорость зависит от нескольких вещей. Если температура воды повышается, то, естественно, повышается скорость звука в воде. То же самое происходит с повышением солености воды и давления, которое растет с увеличением глубины водного пространства. Особую роль на скорость может оказать такое явление, как термоклинья. Это такие места, в которых встречаются разной температуры слои воды.

Также в таких местах разная (из-за разности в температурном режиме). И когда волны звука проходят через такие разноплотные слои, они утрачивают большую часть своей силы. Столкнувшись с термоклином, звуковая волна частично, а иногда и полностью, отражается (степень отражения зависит от угла, под которым падает звук), после чего, по другую сторону этого места, образуется теневая зона. Если рассмотреть пример, когда звуковой источник располагается в водном пространстве выше термоклина, то уже ниже услышать вообще что-то будет не то что сложно, а практически невозможно.

Которые издаются над поверхностью, в самой воде никогда не слышны. И наоборот происходит, когда под водным слоем: над ним он не звучит. Яркий тому пример - современные дайверы. Их слух сильно снижается из-за того, что вода воздействует на а высокая скорость звука в воде снижает качество определения направления, откуда тот движется. Этим самым притупляется стереофоническая способность восприятия звука.

Под слоем воды поступают в человеческое ухо больше всего через кости черепной коробки головы, а не как в атмосфере, через барабанные перепонки. Результатом такого процесса становится его восприятие одновременно обоими ушами. Мозг человека не способен в это время различить места, откуда поступают сигналы, и в какой интенсивности. Итогом становится появление сознания, что звук как бы накатывает со всех сторон одновременно, хотя это далеко не так.

Кроме описанного выше, звуковые волны в водном пространстве имеют такие качества, как поглощение, расходимость и рассеивание. Первое - когда сила звука в соленой воде постепенно сходит на нет за счет трения водной среды и находящихся в ней солей. Расходимость проявляется в удалении звука от его источника. Он будто растворяется в пространстве как свет, и в итоге его интенсивность значительно падает. А пропадают колебания совсем из-за рассеивания на всяческих препятствиях, неоднородностях среды.

Первые попытки понять природу возникновения звука были сделаны более двух тысяч лет назад. В трудах древнегреческих ученых Птолемея и Аристотеля делаются верные предположения о том, что звук порождается колебаниями тела. Более того, Аристотель утверждал, что скорость звука является измеримой и конечной величиной. Конечно, в Древней Греции не было технических возможностей для сколько-нибудь точных измерений, поэтому скорость звука была относительно точно измерена лишь в семнадцатом веке. Для этого использовался метод сравнения между временем обнаружения вспышки от выстрела и временем, через которое до наблюдателя долетал звук. В результате многочисленных экспериментов ученые пришли к выводу, что звук распространяется в воздухе со скоростью от 350 до 400 метров в секунду.

Исследователи также выяснили, что значение скорости распространения звуковых волн в той или иной среде напрямую зависит от плотности и температуры этой среды. Так, чем разреженнее воздух, тем медленнее по нему перемещается звук. Кроме того, скорость звука тем выше, чем выше температура среды. На сегодняшний день принято считать, что скорость распространения звуковых волн в воздухе при нормальных условиях (на уровне моря при температуре 0ºС) равняется 331 метру в секунду.

Число Маха

В реальной жизни скорость звука является значимым параметром в авиации, однако на тех высотах, где обычно , характеристики окружающей среды сильно отличаются от нормальных. Именно поэтому в авиации используется универсальное понятие, которое называется число Маха, названное в честь австрийского Эрнста Маха. Это число представляет собой скорость объекта, поделенную на местную скорость звука. Очевидно, что чем меньше скорость звука в среде с конкретными параметрами, тем больше будет число Маха, даже если скорость самого объекта не изменится.

Практическое применение этого числа связано с тем, что движение на скорости, которая выше скорости звука, существенно отличается от перемещения на дозвуковых скоростях. В основном, это связано с изменением аэродинамики самолета, ухудшением его управляемости, нагревом корпуса, а также с сопротивлением волн. Данные эффекты наблюдаются лишь тогда, когда число Маха превышает единицу, то есть, объект преодолевает звуковой барьер. На данный момент существуют формулы, которые позволяют вычислить скорость звука при тех или иных параметрах воздуха, а, следовательно, рассчитать число Маха для разных условий.

Видео по теме

Источники:

  • Частота колебаний камертона 440 Гц

Звучать могут различные физические объекты, находящиеся в твердом, жидком или газообразном состоянии. Например, вибрирующая струна или выдуваемая из дудочки струя воздуха.

Звук - это волновые колебания среды, воспринимаемые человеческим ухом. Источниками являются различные физические тела. Вибрация источника возбуждает колебания в окружающей среде, которые распространяются в пространстве. Звуковые волны занимают частотный диапазон от 20 Гц до 20кГц, между инфразвуком и ультразвуком.

Механические колебания возникают только там, где есть упругая , поэтому в вакууме звук распространяться не может. Скорость звука - это скорость прохождения звуковой волны по , окружающей источник звука.

Сквозь газообразную среду, жидкости и в твердые тела звук проходит с разной скоростью. В воде звук распространяется быстрее, чем в воздухе. В твердых телах скорость звука выше, чем в . Для каждого вещества скорость распространения звука постоянна. Т.е. скорость звука зависит от плотности и упругости среды, а не от частоты звуковой волны и ее амплитуды.

Звуковая может огибать встреченное препятствие. Это называется дифракцией. У низких звуков дифракция лучше, чем у высоких. Здесь

СКОРОСТЬ ЗВУКА - скорость распространения в среде упругой волны. Определяется упругостью и плотностью среды. Для , бегущей без изменения формы со скоростью с в направлении оси х , звуковое давление р можно представить в виде р = р(х - - ct) , где t - время. Для плоской гармония, волны в среде без дисперсии и С. з. выражается через частоту w и k ф-лой с = w/k. Со скоростью с распространяется фаза гармонич. волны, поэтому с наз. также фазовой С. з. В средах, в к-рых форма произвольной волны меняется при распространении, гармонич. волны тем не менее сохраняют свою форму, но фазовая скорость оказывается различной для разных частот, т. е. имеет место дисперсия звука .В этих случаях пользуются также понятием групповой скорости . При больших амплитудах появляются нелинейные эффекты (см. Нелинейная акустика ),приводящие к изменению любых волн, в т. ч. и гармонических: скорость распространения каждой точки профиля волны зависит от величины давления в этой точке, возрастая с ростом давления, что и приводит к искажению формы волны.

Скорость звука в газах и жидкостях . В газах и жидкостях звук распространяется в виде объёмных волн сжатия - разряжения. Если процесс распространения происходит адиабатически (что, как правило, и имеет место), т. е. изменение темп-ры в звуковой волне не успевает выравниваться и за 1 / 2 , периода тепло из нагретых (сжатых) участков не успевает перейти к холодным (разреженным), то С. з. равна , где Р - давление в веществе, - его плотность, а индекс s показывает, что производная берётся при постоянной энтропии. Эта С. з. наз. адиабатической. Выражение для С. з. может быть записано также в одной из следующих форм:

где К ад - адиабатич. модуль всестороннего сжатия вещества, - адиабатич. сжимаемость, - изотермич. сжимаемость, = - отношение теплоёмкостей при постоянных давлении и объёме.

В ограниченных твёрдых телах кроме продольных и поперечных волн имеются и др. типы волн. Так, вдоль свободной поверхности твёрдого тела или вдоль границы его с др. средой распространяются поверхностные акустические волны , скорость к-рых меньше скорости объёмных волн, характерных для данного материала. Для пластин, стержней и др. твёрдых акустич. волноводов характерны нормальные волны ,скорость к-рых определяется не только свойствами вещества, но и геометрией тела. Так, напр., С. з. для продольной волны в стержне с ст, поперечные размеры к-рого много меньше длины волны звука, отличается от С. з. в неограниченной среде с l (табл. 3):

Методы измерения С.з. можно подразделить на резонансные, интерферометрические, импульсные и оптические (см. Дифракция света на ультразвуке ).Наиб. точности измерения достигают с помощью импульсно-фазовых методов. Оптич. методы дают возможность измерять С. з. на гиперзвуковых частотах (вплоть до 10 11 -10 12 Гц). Точность абс. измерений С. з. на лучшей аппаратуре ок. 10 -3 % , тогда как точность относит. измерений порядка 10 -5 % (напр., при изучении зависимости с от темп-ры или магн. поля пли от концентрации примесей или дефектов).

Измерения С. з. используются для определения мн. свойств вещества, таких, как величина отношения теплоёмкостей для газов, сжимаемости газов и жидкостей, модулей упругости твёрдых тел, дебаевской темп-ры и др. (см. Молекулярная акустика) . Определение малых изменений С. з. является чувствит. методом фиксирования примесей в газах и жидкостях. В твёрдых телах измерение С. з. и её зависимости от разл. факторов (темп-ры, магн. поля и др.) позволяет исследовать строение вещества: зонную структуру полупроводников, строение поверхности Ферми в металлах и пр.

Лит.: Ландау Л. Д., Л и ф ш и ц Е. М., Теория упругости, 4 изд., М., 1987; их же, Гидродинамика, 4 изд., М., 1988; Бергман Л., и его применение в науке и технике, пер. с нем., 2 изд., М., 1957; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Таблицы для расчета скорости звука в морской воде, Л., 1965; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966, гл. 4; т. 4, ч. Б, М., 1970, гл. 7; Колесников А. Е., Ультразвуковые измерения, 2 изд., М., 1982; Т р у э л л Р., Э л ь б а у м Ч., Ч и к Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972; Акустические кристаллы, под ред. М. П. Шаскольской, М., 1982; Красильни ков В. А., Крылов В. В., Введение в физическую акустику, М., 1984. А. Л. Полякова .

С какой скоростью движется звук?

Скорость звука зависит от того, в какой среде он распространяется. Так, в воздухе звук движется со скоростью 344 м/c. Однако если температура, давление, влажность воздуха варьируют, то и скорость звука изменяется. Через жидкую среду, например воду, звук проходит со скоростью примерно 1500 м/c. Ещё быстрее звук движется сквозь твёрдые вещества: 2500 м/с – через твёрдые пластмассы, 5000 м/с – через сталь и примерно 6000 м/с – через некоторые виды стекла.

Может ли звук отражаться от предметов так же, как свет?

Звуковые волны отражаются от твёрдых, гладких и плоских поверхностей (стены, двери), как световые волны от зеркала. Если между возвращением отзвука (или отражения) и посылом оригинального звука проходит более 0,1 с, то мы слышим их как два раздельных звука, отражённый звук называется эхом. Если разница во времени между приходом отражённого эха и посылом звука меньше, то они смешиваются. Что увеличивает общую длительность звучания. Данное явление известно как реверберация.

Специальные звукопоглощающие комнаты изнутри полностью покрыты мягкими материалами определённой фактуры. Стены, потолки и пол улавливают почти всю звуковую энергию, и отражения звука не происходит ни в виде эха, ни в виде реверберации. Такие помещения называют глухими комнатами: все звуки в них приглушены.

Охотящиеся киты, например белухи, издают акустические щелчки, похожие на те, что рассылает летучая мышь. Эти импульсы отражаются как эхо, сообщая киту о расположенных рядом объектах.

Измерим звук

Скорость в соответствии с числом Маха

Некоторые самолёты могут летать со скоростью выше скорости звука, по шкале Маха она соответствует числу М=1. Вокруг летящего сверхзвукового самолёта образуется волна сжатия, которая распространяется в виде громкого глубокого глухого удара, известного как звуковой (когда самолёт преодолевает звуковой барьер). Удар мог бы выдать присутствие самолёта-невидимки «Стелс», бомбардировщика Б-2, поэтому такие самолёты обычно летают со скоростью чуть меньше числа М=1.

Крейсерская скорость Б-2 – примерно 700 км/ч.

Число Маха

Скорость звука можно описать по шкале Маха. Единицу измерения представляют в виде сравнительного числа отношения скорости самолёта к скорости звука в определённых условиях. Число Маха названо так по имени австрийского учёного Эрнста Маха (1838-1916).

Скорость звука в воздухе при температуре 20 градусов и стандартном давлении воздуха на уровне моря соответствует примерно 1238 км/ч. Поэтому предмет, двигающийся так же быстро, имеет скорость М=1 в числах Маха.

Очень высоко над землёй, где температура и давление воздуха ниже обычных, скорость звука составляет 1062 км/ч. Поэтому число Маха 1,5 там соответствует 1593 км/ч.

10 дБ – самые тихие звуки, которые может уловить наш слух, например тиканье часов

20 дБ – шёпот

40 дБ – спокойная беседа окружающих людей

50 дБ – телевидение или радио в среднем звуковом диапазоне

60 дБ – достаточно громкая беседа

70 дБ – домашние приборы: пылесос или домашний комбайн

80 дБ – поезд, проезжающий мимо станции

100 дБ – очень шумный станок или отбойный молоток для дорожных работ

120 дБ – взлетающий реактивный самолёт

По шкале децибелов каждый разрыв в 10 дБ означает 10-кратное увеличение энергии. Например, 60 дБ – звук, в десять раз более сильный, чем 50 дБ.