Что такое геомагнитные индексы А, К и Кр? Индекс геомагнитной активности

Добрый всем день! Сегодня я решила написать такую необычно интересную статью о магнитных бурях. Вообще раньше, я никогда не ощущала на себе никого действия и даже не задумывалась над этим вопросом, что это такое и вообще как они влияют на человека и на нашу Землю.

Но время шло, и сейчас я все чаще ощущаю на себе эти так сказать магнитные потоки. Иногда чувствую себя плохо, а оказывается одной из причин служат магнитные дни.

Давайте разберемся, что это такое. Я не буду сильно вдаваться в большие подробности, так в этой заметке, я хочу просто дать вам небольшие рекомендации и опубликовать график магнитных бурь по дням на месяц. Да бы предостеречь Вас от неприятностей связанных с вашим здоровьем.

Магнитные бури: что это? Влияние магнитных бурь на человека

На Солнце постоянно происходят вспышки и некоторые из них мощнее, некоторые слабее. И вот когда особо сильные вспышки происходят поток заряженных частиц устремляется в разные стороны, в том числе в сторону Земли. Спустя сутки, а может быть и двое они достигают Земли и начинают влиять на естественное магнитное поле нашей планеты.


На крайнем Севере это видно по состоянию атмосферы и возникает такое явление, как Северное Сияние. Так вот, когда происходит искажение геомагнитного поля это и отражается на состоянии человека.


Так вот, в обычных условиях через капилляры кровь движется достаточно быстро, а вот когда изменяется геомагнитный фон, то движение крови замедляется по капиллярам, наши красные кровяные тельца в крови слипаются и очень медленно движутся из-за чего, организм вынужден повышать артериальное давление, происходит усиленный выброс гормонов надпочечников, гормонов стресса — это и кортизола и адреналина. Изменяется уровень мелатонина в крови, который отвечает за адаптацию организма, при этом усиливается на 75% случаев инфаркта миокард.

По наблюдениям скорой помощи, в те дни когда есть магнитные бури, то на 20% экстренных ситуаций становится больше, чем обычно.

Как защититься и как помочь себе пережить магнитную бурю?

Готовясь в этой заметке я нашла очень интересный материал из программы «Жить здорово» мне бы очень хотелось, чтобы вы обязательно просмотрели это видео. В нем Елена Малышева и ее помощники все очень четко и ясно по полочкам показывают и объясняют, используя опыты, а в конце дают ценные рекомендации.

Поэтому, если хотите себе помочь, то не отказывайте себе в этом важном совете, который дается в самом конце:

  • уменьшите в такие дни физические нагрузки и вообще какое либо эмоциональное напряжение;
  • никогда не вставайте резко с кровати, с дивана, это способствует усилению головной боли;
  • нежелательно куда-либо ездить, особенно в самолетах и метро, и тем более вести автомобиль;
  • необходимо принимать успокаивающие средства, чай с мятой, со зверобоем, мелиссой, если у вас на душе тревога и раздражительность, а также бессонница.

Вчера еще наткнулась на одно видео, которое было снято в программе «О самом главном» и вы знаете, меня там многое поразило, оказывается некоторые люди сами за частую виноваты в том, что они не могут справиться с магнитными бурями, и знаете почему? Уделите 15 минут своего времени и просмотрите этот видеосюжет, который основан на реальных фактах и двух жизненных историях молодых женщин.

И тогда вы точно будете себя лучше чувствовать!

Магнитные бури в марте 2019 (расписание по дням)

Хочется отметить, что все магнитные потоки даны из предварительных данных и воспринимать как точную информацию не нужно. Ведь все таки наш мир не стоит на месте, некоторые земные и космические явления нельзя предугадать и увидеть. Возможно в будущем что-то такое и изобретут, чтобы угадывать с вероятностью на 100%))).

Конечно не все из нас будут углубляться в эти расписания, поэтому я сначала написала кратко даты, а потом привела график.

Важно! В дальнейшем следите за обновлениями сайта, информация будет появляться постоянно помесячно онлайн. Поэтому предлагаю добавить сайт в закладки и когда Вам будет удобно просматривайте эти данные.


Расписание на этот промежуток времени будет таким. Обратите внимание на красные и желтые столбики, если вы их видите на этом графике, будьте бдительны к этим датам:


Как понимать эту таблицу, график? В помощь для Вас, я составила вот такую памятку:


На этом я заканчиваю писать это пост. В заключении хочу сказать, берегите себя и своих близких! Ведь здоровье превыше всего! Если будет здоровье, будет все! Всего самого хорошего и доброго! До встречи!

С уважением, Екатерина Манцурова

Одним из ключевых навыков любого охотника за DX на КВ диапазонах является способность оценивать условия прохождения в произвольный момент времени. Отличные условия прохождения, когда на диапазонах слышно много станций со всего света, могут изменяться так, что диапазоны пустеют и только единичные станции пробиваются сквозь шум и треск эфира. Для того, чтобы понять что и почему происходит в радиоэфире, а так же оценить его возможности в данный момент времени, используются три основных индекса: поток солнечного излучения (solar flux), A p и K p . Хорошее практическое понимание того, что собой представляют эти значения и каков их смысл, является неоспоримым преимуществом даже для радиолюбителя с самым лучшим и современным комплектом связной аппаратуры.

Земная атмосфера

Ионосферу можно представить как нечто многослойное. Границы слоев достаточно условны и определяются областями с резким изменением уровня ионизации (рис. 1) . Ионосфера оказывает непосредственное влияние на характер распространения радиоволн, потому что в зависимости от степени ионизации отдельных ее слоев, радиоволны могут преломляться, то есть траектория их распространения перестает быть прямолинейной. Довольно часто степень ионизации достаточно высока, так что радиоволны отражаются от высокоионизированных слоев и возвращаются на Землю (рис. 2) .

Условия прохождения радиоволн на КВ диапазонах непрерывно меняются в зависимости от изменения уровней ионизации ионосферы. Солнечная радиация, достигая верхних слоев земной атмосферы, ионизирует молекулы газов, порождая положительные ионы и свободные электроны. Вся эта система находится в динамическом равновесии за счет процесса рекомбинации, обратного ионизации, года вступающие во взаимодействие друг с другом положительно заряженные ионы и свободные электроны вновь образуют молекулы газов. Чем выше степень ионизации (чем больше свободных электронов), тем лучше ионосфера отражает радиоволны. Кроме того, чем выше уровень ионизациии, тем выше могут быть частоты, на которых обеспечиваются хорошие условия прохождения. Уровень ионизации атмосферы зависит от многих факторов, включая время суток, время года, и самого главного фактора - цикла солнечной активности. Достоверно известно, что интенсивность солнечного излучения зависит от числа пятен на Солнце. Соответственно, максимум излучения, полученного от Солнца, достигается в периоды максимальной солнечной активности. Кроме того, в эти периоды возрастает и геомагнитная активность из-за усиления интенсивности потока ионизированных частиц от Солнца. Обычно этот поток достаточно стабилен, но из-за возникающих на Солнце впышек он может значительно усиливаться. Частицы достигают околоземное пространство и вступают во взаимодействие с магнитным полем Земли, вызывая его возмущения и порождая магнитные бури. Кроме того, эти частицы могут стать причиной возникновения ионосферных бурь, при которых радиосвязь на коротких волнах становится затруднительной, а иногда и вообще невозможной.

Поток солнечного излучения

Величина, известная как поток солнечного излучения, является основным индикатором солнечной активности и определяет уровень излучения, получаемого Землей от Солнца. Он измеряется в единицах солнечного потока (SFU) и определяется уровнем радиошума, излучаемого на частоте 2800 МГц (10.7 см). Радиоастрономическая обсерватория Пентиктона в Британской Колумбии, что в Канаде, ежедневно публикует это значение. Поток солнечного излучения оказывает непосредственное влияние на степень ионизации и следовательно концентрации электронов в области F 2 ионосферы. В результате он дает очень хорошее представление о возможности установления радиосвязи на дальние расстояния.

Величина солнечного потока может изменяться в пределах 50 - 300 единиц. Небольшие значения указывают на то, что максимально-применимая частота (МПЧ) будет низкой, а общие условия прохождения радиоволн будут плохими, особенно на высокочастотных диапазонах. (Рис. 2) Напротив, большие значения солнечного потока свидетельствуют о достаточной ионизации, что позволяет устанавливать дальние связи на более высоких частотах. Однако, следует помнить, что требуется несколько дней подряд с высокими значениями величины солнечного потока, чтобы условия прохождения ощутимо улучшились. Обычно в периоды высокой солнечной активности величина солнечного потока превышает 200 с кратковременными всплесками вплоть до 300.

Геомагнитная активность

Существуют два индекса, которые используются для определения уровня геомагнитной активности - A и K. Они показывают величины магнитного и ионосферного возмущений. Индекс K показывает величину геомагнитной активности. Ежедневно, каждые 3 часа, начиная с 00:00 UTC, определяются максимальные отклонения значения индекса относительно значений для спокойного дня выбранной обсерватории, и выбирается наибольшая величина. На основании этих данных вычисляется значение индекса K. Индекс K является квазилогарифмической величиной, поэтому его нельзя усреднять для получения долгосрочной исторической картины состояния магнитного поля Земли. Для решения этой проблемы существует индекс A, который представляет собой дневное среднее. Вычисляется он довольно просто - каждое измерение индекса K, сделанное, как уже говорилось выше, с 3-х часовым интервалом, по Табл. 1

преобразуется в эквивалентный индекс. Полученные в течение дня значения этого индекса усредняются и в итоге получается значение индекса A, который в обычные дни не превышает 100, а во время очень серьезных геомагнитных бурь может достигать 200 и даже больше. Значения индекса A могут быть отличаться у разных обсерваторий, так как возмущения магнитного поля Земли могут носить локальный характер. Чтобы избежать разночтений, индексы A, полученные в разных обсерваториях, усредняются и в итоге получается глобальный индекс A p . Точно так же получается значение индекса K p - среднее значение всех индексов K, полученных в различных обсерваториях земного шара. Его значения между 0 и 1 характеризует спокойную геомагнитную обстановку, и это может указывать на наличие хороших условий прохождения на коротковолновых диапазонах при условии достаточно высокой интенсивности потока солнечного излучения. Значения между 2 и 4 указывают на умеренную или даже активную геомагнитную обстановку, что, вероятно, отрицательно повлияет на условия прохождении радиоволн. Далее по шкале значений: 5 свидельствует о незначительной буре, 6 - сильная буря и 7 - 9 говорят об очень сильной буре, в результате которой прохождения на КВ скорее всего не будет. Несмотря на то, что геомагнитные и ионосферные бури взаимосвязаны, стоит еще раз отметить, что они различны. Геомагнитная буря - это возмущение магнитного поля Земли, а ионосферная буря - это возмущение ионосферы.

Интерпретация значений индексов

Самый простой способ использования значений индексов состоит в том, чтобы ввести их в качестве исходных данных в программу расчета прогноза прохождения радиоволн. Это позволит получить более или менее достоверный прогноз. В своих расчетах эти программы учитывают дополнительные факторы, такие как пути распространения сигналов, потому что для разных трасс влияние магнитных бурь будет разным.

При отсутствии программы неплохой оценочный прогноз можно сделать самостоятельно. Очевидно, что большие значения индекса солнечного потока - это хорошо. Вообще говоря, чем интенсивнее поток, тем лучше будут условия прохождения на высокочастотных КВ диапазонах, включая диапазон 6 м. Однако, следует иметь ввиду так же и значения потока за предыдущие дни. Сохранение больших значений в течение нескольких дней обеспечит более высокую степень ионизации слоя F2 ионосферы. Обычно значения, превышающие 150, гарантируют хорошее прохождение на КВ. Высокие уровни геомагнитной активности обладают так же и неблагоприятным побочным эффектом, значительно снижающим МПЧ. Чем выше уровень геомагнитной активности согласно индексам Ap и Kp, тем ниже МПЧ. Фактические значения МПЧ зависят не только от силы магнитной бури, но также и от ее продолжительности.

Заключение

Постоянно следите за изменениями значений индексов солнечной и геомагнитной активности. Эти данные есть на сайтах www.eham.net , www.qrz.com , www.arrl.org и многих других, а так же их можно получить через терминал при подключении к DX-кластерам. Неплохое прохождение на КВ возможно в периоды, когда поток солнечного излучения превышает 150 в течение нескольких дней, а индекс K p в то же время держится ниже 2. Когда эти условия выполняются, проверяйте диапазоны - наверняка там уже работает какой-нибудь хороший DX!

По материалам Understanding Solar Indices By Ian Poole, G3YWX

Вы наверное обращали внимание на всевозможные баннеры и целые страницы на сайтах радиолюбительской тематики, содержащие разнообразные индексы и показатели текущей солнечной и геомагнитной активности. Вот они то нам и нужны для оценки условий прохождения радиоволн на ближайшее время. Несмотря на всё многообразие источников данных, одним из самых популярных являются баннеры, которые предоставляет Paul Herrman (N0NBH), причём совершенно бесплатно.

На его сайте можно выбрать любой из 21 доступных баннеров для размещения в удобном для вас месте, либо воспользоваться ресурсами, на которых эти баннеры уже установлены. В общей сложности они могут отображать до 24 параметров в зависимости от форм-фактора баннера. Ниже приводятся краткие сведения по каждому из параметров баннера. На разных баннерах обозначения одних и тех же параметров могут отличаться, поэтому в некоторых случаях приводится несколько вариантов.

Параметры солнечной активности

Индексы солнечной активности отражают уровень электромагнитного излучения и интенсивность потока частиц, источником которых является Солнце.
Интенсивность потока солнечного излучения (SFI)

SFI — это показатель интенсивности излучения на частоте 2800 МГц, генерируемого Солнцем. Эта величина не оказывает прямого влияния на прохождение радиоволн, но её значение гораздо легче измерить, а она хорошо коррелирует с уровнями солнечного ультрафиолетового и рентгеновского излучения.
Число солнечных пятен (SN)

SN — это не просто количество пятен на Солнце. Значение этой величины зависит от количества и размера пятен, а так же от характера их расположения на поверхости Солнца. Диапазон значений SN — от 0 до 250. Чем выше значение SN, тем выше интенсивность ультрафиолетового и рентгеновского излучения, которое повышает ионизацию Земной атмосферы и приводит к формированию в ней слоёв D, E и F. C ростом уровня ионизации ионосферы повышается и максимально применимая частота (MUF). Таким образом, увеличение значений SFI и SN свидетельствует об увеличении степени ионизации в слоях E и F, что в свою очередь оказывает положительное воздействие на условия прохождения радиоволн.

Интенсивность рентгеновского излучения (X-Ray)

Величина этого показателя зависит от интенсивности рентгеновского излучения, достигающего Земли. Значение параметра состоит из двух частей — буквы, отражающей класс активности излучения, и числа, показывающего мощность излучения в единицах Вт/м2. От интенсивности рентгеновского излучения зависит степень ионизации слоя D ионосферы. Обычно в дневное время слой D поглощает радиосигналы на низкочастотных КВ диапазонах (1.8 — 5 МГц) и значительно ослабляет сигналы в диапазоне частот 7-10 МГц. С ростом интенсивности рентгеновского излучения слой D расширяется и в экстремальных ситуациях может поглощать радиосигналы практически во всём КВ-диапазоне, затрудняя радиосвязь и иногда приводя к практически полному радиомолчанию, которое может продолжаться несколько часов.

Это значение отражает относительную интенсивность всего солнечного излучения в ультрафиолетовом диапазоне (длина волны 304 ангстрем). Ультрафиолетовое излучение оказывает значительное влияние на уровень ионизации ионосферного слоя F. Значение 304A коррелирует со значением SFI, поэтому его увеличение приводит к улучшению условий прохождения радиоволн отражением от слоя F.

Межпланетное магнитное поле (Bz)

Индекс Bz отражает силу и направление межпланетного магнитного поля. Положительное значение этого параметра означает, что направление межпланетного магнитного поля совпадает с направлением магнитного поля Земли, а отрицательное значение свидетельствует об ослаблении магнитного поля Земли и снижении его экранирующих эффектов, что в свою очередь усиливает воздействие заряженных частиц на земную атмосферу.

Солнечный ветер (Solar Wind/SW)

SW — это скорость заряженных частиц (км/ч), достигших поверхности Земли. Значение индекса может лежать в интервале от 0 до 2000. Типичное значение — около 400. Чем выше скорость частиц, тем большее давление испытывает ионосфера. При значениях SW, превышающих 500 км/ч, солнечный ветер может вызвать возмущение магнитного поля Земли, что в итоге приведёт к разрушению ионосферного слоя F, снижению уровню ионизации ионосферы и ухуджению условий прохождения на КВ-диапазонах.

Поток протонов (Ptn Flx/PF)

PF — это плотность протонов внутри магнитного поля Земли. Обычное значение не превышает 10. Протоны, вступившие во взаимодействие с магнитным полем Земли, перемещаются по его линиям в направлении полюсов, изменяя в этих зонах плотность ионосферы. При значениях плотности протонов свыше 10000 увеличивается затухание радиосигналов, проходящих через полярные зоны Земли, а при значениях свыше 100000 возможно полное отсутствие радиосвязи.

Поток электронов (Elc Flx/EF)

Этот параметр отражает интенсивность потока электронов внутри магнитного поля Земли. Ионосферный эффект от взаимодействия электронов с магнитным полем аналогичен потоку протонов на авроральных трассах при значениях EF, превышающих 1000.
Уровень шума (Sig Noise Lvl)

Это значение в единицах шкалы S-метра показывает уровень шумового сигнала, который возникает в результате взаимодействия солнечного ветра с магнитным полем Земли.

Параметры геомагнитной активности

Есть два аспекта, по которым информация о геомагнитной обстановке важна для оценки прохождения радиоволн. С одной стороны, с ростом возмущённости магнитного поля Земли разрушается ионосферный слой F, что негативно сказывается на прохождении коротких волн. С другой — возникают условия для аврорального прохождения на УКВ.

Индексы A и К (A-Ind/K-Ind)

Состояние магнитного поля Земли характеризуется индексами A и K. Увеличение значения индекса K свидетельствует о нарастающей его нестабильности. Значения K, превышающие 4 означают наличие магнитной бури. В качестве базовой величины для определения динамики изменения значений индекса K используется индекс A.
Аврора (Aurora/Aur Act)

Значение этого параметра является производной величиной от уровня мощности солнечной энергии, измеряемой в гигаваттах, которая достигает полярных областей Земли. Параметр может принимать значения в интервале от 1 до 10. Чем больше уровень солнечной энергии, тем сильнее ионизация слоя F ионосферы. Чем больше значение этого параметра, тем меньшую широту имеет граница авроральной шапки и тем выше вероятность возникновения полярных сияний. При высоких значениях параметра появляется возможность для проведения дальних радиосвязей на УКВ, но при этом полярные трассы на КВ частотах могут быть частично или полностью заблокированы.

Широта (Aur Lat)

Максимальная широта, на которой возможно авроральное прохождение.

Максимально применимая частота (MUF)

Значение максимально применимой частоты, измеренное в указанной метеорологической обсерватории (или обсерваториях, в зависимости от вида баннера), на приведённый момент времени (UTC).

Затухание на трассе Земля-Луна-Земла (EME Deg)

Этот параметр характеризует величину затухания в децибелах радиосигнала, отражённого от лунной поверхности на трассе Земля-Луна-Земля, и может принимать следующие значения: Very Poor (> 5.5 дБ), Poor (> 4 дБ), Fair (> 2.5 дБ), Good (> 1.5 дБ), Excellent (

Геомагнитная обстановка (Geomag Field)

Этот параметр характеризует текущую геомагнитную обстановку на основании значения индекса K. Его шкала условно разделена на 9 уровней от Inactive до Extreme Storm. При значениях Major, Severe и Extreme Storm прохождение на КВ диапазонах ухудшается вплоть до полного их закрытия, а вероятность возникновения аврорального прохождения увеличивается.

При отсутствии программы неплохой оценочный прогноз можно сделать самостоятельно. Очевидно, что большие значения индекса солнечного потока — это хорошо. Вообще говоря, чем интенсивнее поток, тем лучше будут условия прохождения на высокочастотных КВ диапазонах, включая диапазон 6 м. Однако, следует иметь ввиду так же и значения потока за предыдущие дни. Сохранение больших значений в течение нескольких дней обеспечит более высокую степень ионизации слоя F2 ионосферы. Обычно значения, превышающие 150, гарантируют хорошее прохождение на КВ. Высокие уровни геомагнитной активности обладают так же и неблагоприятным побочным эффектом, значительно снижающим МПЧ. Чем выше уровень геомагнитной активности согласно индексам Ap и Kp, тем ниже МПЧ. Фактические значения МПЧ зависят не только от силы магнитной бури, но также и от ее продолжительности.

31.10.2012

Уровни геомагнитной активности выражаются с помощью двух индексов - А и К, показывающих величины магнитного и ионосферного возмущения. Индекс К высчитывается на основе измерений магнитного поля, проводящихся ежедневно с трехчасовым интервалом, начиная с нуля часов по универсальному времени (иначе - UTC, мировому, гринвичскому).

Максимальные величины магнитного возмущения сравниваются с значениями магнитного поля спокойного дня для конкретной обсерватории и в расчет принимается наибольшая величина из отмеченных отклонений. Затем по специальной таблице полученное значение переводится в индекс К. К-индекс - это квазилогарифмическая величина, то есть его значение увеличивается на единицу при увеличении возмущения магнитного поля примерно вдвое, что затрудняет вычисление усредненного значения.

Поскольку возмущения магнитного поля неодинаково проявляются в различных точках Земли, то такая таблица существует для каждой из 13 геомагнитных обсерваторий, расположенных на геомагнитных широтах от 44 до 60 градусов в обоих полушариях планеты. Это в целом при большом количестве измерений за длительное время дает возможность вычислить среднепланетарный К р -индекс, который представляет собой дробную величину в интервале от 0 до 9.


А-индекс - величина линейная, то есть при увеличении геомагнитного возмущения возрастает аналогично ему, вследствие чего использование этого индекса часто имеет больше физического смысла. Значения А р -индекса соотносятся со значениями К р -индекса и представляют собой усредненные показатели вариации магнитного поля. Индекс А р выражается в целых числах от 0 до > 400. Например, интервалу К р от 0 о до 1+ соответствуют значения А р от 0 до 5, а К р от 9- до 9 0 - 300 и > 400 соответственно. Для определения величины А р -индекса также существует специальная таблица.

В практическом применении К-индекс учитывается для определения прохождения радиоволн. Уровень от 0 до 1 соответствует спокойной геомагнитной обстановке и хорошим условиям для прохождения КВ. Значения от 2 до 4 указывают на умеренное геомагнитное возмущение, что несколько затрудняет прохождение коротковолнового диапазона. Значениями, начиная с 5, обозначаются геомагнитные бури, которые создают серьезные помехи указанному диапазону, а при сильных бурях (8 и 9) делают прохождение коротких волн невозможным.

  • Солнечные космические лучи (СКЛ) - протоны, электроны, ядра, образовавшиеся во вспышках на Солнце и достигшие орбиты Земли после взаимодействия с межпланетной средой.
  • Магнитосферные бури и суббури, вызванные приходом к Земле межпланетной ударной волны, связанной как с КВМ и с КОВ, так и с высокоскоростными потоками солнечного ветра;
  • Ионизующее электромагнитное излучение (ИЭИ) солнечных вспышек, вызывающее разогрев и дополнительную ионизацию верхней атмосферы;
  • Возрастания потоков релятивистских электронов во внешнем радиационном поясе Земли, связанные с приходом к Земле высокоскоростных потоков солнечного ветра.

Солнечные космические лучи (СКЛ)

Образовавшиеся во вспышках энергичные частицы − протоны, электроны, ядра − после взаимодействия с межпланетной средой могут достичь орбиты Земли. Принято считать, что наибольший вклад в суммарную дозу вносят солнечные протоны с энергией 20-500 МэВ. Максимальный поток протонов с энергией выше 100 МэВ от мощной вспышки 23 февраля 1956 г. составил 5000 частиц на см -2 с -1 .
(см. подробнее материалы к теме "Солнечные космические лучи").
Основной источник СКЛ –солнечные вспышки, в редких случаях - распад протуберанца (волокна) .

СКЛ как основной источник радиационной опасности в ОКП

Потоки солнечных космических лучей значительно повышают уровень радиационной опасности для космонавтов, а также экипажей и пассажиров высотных самолетов на полярных трассах; приводят к потерям спутников и выходу из строя аппаратуры, используемой на космических объектах. О вреде, который радиация наносит живым существам достаточно хорошо известно (подробнее см. материалы к теме "Как космическая погода влияет на нашу жизнь?"), но кроме того большая доза облучения может выводить из строя и электронное оборудование, установленное на космических аппаратах (см. подробнее лекцию 4 и материалы к темам по воздействию внешней среды на космические аппараты, их элементы и материалы).
Чем сложнее и современнее микросхема, тем меньше размеры каждого элемента и тем больше вероятность сбоев, которые могут привести к её неправильной работе и даже к остановке процессора .
Приведем наглядный пример того, как потоки СКЛ высоких энергий влияют на состояние научной аппаратуры, установленной на космических аппаратах.

На рисунке для сравнения приведены фотографии Солнца, сделанные прибором EIT (SOHO), сделанные до (07:06 UT 28/10/2003) и после мощной вспышки на Солнце, произошедшей около 11:00 UT 28/10/2003, после которой в ОКП потоки протонов с энергиями 40-80 МэВ возросли почти на 4 порядка. По количеству "снега" на правом рисунке видно, насколько регистрирующая матрица прибора повреждена потоками вспышечных частиц.

Влияние возрастаний потоков СКЛ на озоновый слой Земли

Поскольку источниками окислов азота и водорода, содержанием которых в средней атмосфере определяется количество озона, могут являться и высокоэнергичные частицы (протоны и электроны) СКЛ, их влияние должно быть учтено при фотохимическом моделировании и интерпретации данных наблюдений в моменты солнечных протонных событий или сильных геомагнитных возмущений.

Солнечные протонные события

Роль 11-летней вариаций ГКЛ при оценке радиационной безопасности долговременных космических полетов

При оценке радиационной безопасности длительных космических полетов (таких, например, как планируемая экспедиция на Марс) становится необходимым учет вклада в радиационную дозу галактических космических лучей (ГКЛ) (подробнее смотри лекцию 4). Кроме того, для протонов с энергией выше 1000 МэВ величина потоков ГКЛ и СКЛ становится сравнимой. При рассмотрении различных явлений на Солнце и в гелиосфере на временных интервалах длиною в несколько десятилетий и более определяющим их фактором является 11-летняя и 22-летняя цикличность солнечного процесса. Как видно из рисунка, интенсивность ГКЛ меняется в противофазе с числом Вольфа. Это весьма важно, поскольку в минимуме СА межпланетная среда возмущена слабо, а потоки ГКЛ максимальны. Имея высокую степень ионизации и будучи всепроникающими, в периоды минимума СА ГКЛ определяют дозовые нагрузки на человека в космических и авиационных полетах. Однако процессы солнечной модуляции оказываются довольно сложными и не сводятся только к антикорреляции с числом Вольфа. .


На рисунке показана модуляция интенсивности КЛ в 11-летнем солнечном цикле .

Солнечные электроны

Солнечные электроны высоких энергий могут вызвать объёмную ионизацию КА, а также выступать в качестве «электронов-киллеров» для микросхем, установленных на космических аппаратах. Из-за потоков СКЛ нарушается коротковолновая связь в приполярных районах и возникают сбои в навигационных системах.

Магнитосферные бури и суббури

Другими важными следствиями проявления солнечной активности, влияющими на состояние околоземного пространства, являются магнитные бури – сильные (десятки и сотни нТл) изменения горизонтальной составляющей геомагнитного поля, измеренного на поверхности Земли на низких широтах. Магнитосферная буря – это совокупность процессов, происходящих в магнитосфере Земли во время магнитной бури, когда происходит сильное поджатие границы магнитосферы с дневной стороны, другие значительные деформации структуры магнитосферы, формируется кольцевой ток энергичных частиц во внутренней магнитосфере .
Термин "суббуря" был введен в 1961г. С-И. Акасофу для обозначения авроральных возмущений в зоне сияний длительностью порядка часа. В магнитных данных еще раньше были выделены бухтообразные возмущения, совпадающие по времени с суббурей в полярных сияниях. Магнитосферная суббуря – это совокупность процессов в магнитосфере и ионосфере, которую в самом общем случае можно характериизовать как последовательность процессов накопления энергии в магнитосфере и ее взрывного высвобождения . Источник магнитных бурь − приход к Земле высокоскоростной солнечной плазмы (солнечного ветра), а также КОВ и связанной с ними ударной волны. Высокоскоростные потоки солнечной плазмы в свою очередь делятся на спорадические, связанные с солнечными вспышками и КВМ, и квазистационарные, возникающие над корональными дырами Магнитные бури в соответствии с их источником делятся на спорадические и реккурентные. (Подробнее см. лекцию 2).

Геомагнитные индексы – Dst, AL, AU, AE

Численной характеристикой, отражающей геомагнитные возмущения, являются различные геомагнитные индексы – Dst, Kp, Ap, AA и другие.
Амплитуду вариаций магнитного поля Земли часто используют как наиболее общую характеристику силы магнитных бурь. Геомагнитный индекс Dst содержит информацию о планетарных возмущениях во время геомагнитных бурь.
Для изучения процессов суббури трехчасовой индекс не годится, за это время суббуря может начаться и закончиться. Детальную структуру флуктуаций магнитного поля из-за токов авроральной зоны (авроральная электроструя ) характеризует индекс авроральной электроструи AE . Для вычисления индекса AE используются магнитограммы Н-компонентов обсерваторий, расположенных на авроральных или субавроральных широтах и равномерно распределенных по долготе. В настоящее время индексы АЕ вычисляются по данным 12 обсерваторий, расположенных в северном полушарии на разных долготах между 60 и 70° геомагнитной широты. Для численного описания суббуревой активности используются также геомагнитные индексы АL (наибольшая отрицательная вариация магнитного поля), АU (наибольшая положительная вариация магнитного поля) и AЕ (разность АL и АU).


Dst-индекс за май 2005 г.

Кр, Ар, АА индексы

Индекс геомагнитной активности Кр рассчитывают каждые три часа по измерениям магнитного поля на нескольких станциях, расположенных в различных частях Земли. Он имеет уровни от 0 до 9, каждому следующему уровню шкалы соответствуют вариации в 1,6-2 раза большие предыдущего. Сильным магнитным бурям соответствуют уровни Кр больше 4. Так называемые супербури с Кр = 9 случаются достаточно редко. Наряду с Кр используют также индекс Ар, равный средней амплитуде вариаций геомагнитного поля по земному шару за сутки. Он измеряется в нанотеслах (земное поле равно примерно
50 000 нТл). Уровню Кр = 4 приблизительно соответствует Ар, равный 30, а уровню Кр = 9 отвечает Ар больше 400. Ожидаемые значения таких индексов и составляют основное содержание геомагнитного прогноза . Ар-индекс стал рассчитываться с 1932 года, поэтому для более ранних периодов используется АА-индекс – среднесуточная амплитуда вариаций, расчитываемая по двум антиподальным обсерваториям (Гринвич и Мельбурн) с 1867 г.

Комплексное влияние СКЛ и бурь на космическую погоду за счет проникновения СКЛ в магнитосферу Земли во время магнитных бурь

С точки зрения радиационной опасности, которую несут потоки СКЛ для высокоширотных участков орбит КА типа МКС, необходимо учитывать не только интенсивность событий СКЛ, но и границы их проникновения в магнитосферу Земли (см. подробнее лекцию 4.). Причем, как видно из приведенного рисунка, СКЛ проникают достаточно глубоко даже для небольших по амплитуде (-100 нТ и меньше) магнитных бурь.

Оценка радиационной опасности в высокоширотных областях траектории МКС по данным низкоорбитальных полярных спутников

Оценки доз радиации в высокоширотных областях траектории МКС, полученные на основании данных о спектрах и границах проникновения СКЛ в магнитосферу Земли по данным ИСЗ «Университетский-Татьяна» во время солнечных вспышек и магнитных бурь сентября 2005 года, были сопоставлены с дозами, экспериментально измеренными на МКС в высокоширотных областях. Из приведенных рисунков хорошо видно, что расчетные и экспериментальные значения согласуются, что говорит о возможности оценки радиационных доз на разных орбитах по данным низковысотных полярных спутников.


Карта доз на МКС (СРК) и сравнение расчетных и экспериментальных доз.

Магнитные бури как причина нарушения радиосвязи

Магнитные бури приводят к сильным возмущениям в ионосфере, которые в свою очередь, отрицательно сказываются на состояния радиоэфира . В приполярных районах и зонах аврорального овала ионосфера связана с наиболее динамичными областями магнитосферы и поэтому наиболее чувствительна к таким воздействиям. Магнитные бури в высоких широтах могут практически полностью блокировать радиоэфир на несколько суток. При этом страдают и другие сферы деятельности, например, авиасообщение . Другим негативным эффектом, связанным с геомагнитными бурями, является потеря ориентации ИСЗ, навигация которых осуществляется по геомагнитному полю, испытывающем во время бури сильные возмущенния . Естественно, что во время геомагнитных возмущений возникают проблемы и с радиолокацией.

Влияние магнитных бурь на функционирование телеграфных линий и линий электропередач, трубопроводов, железных дорог

Вариации геомагнитного поля, возникающие во время магнитных бурь в полярных и авроральных широтах (согласно известному закону электромагнитной индукции), генерируют вторичные электрические токи в проводящих слоях литосферы Земли, в соленой воде и в искусственных проводниках. Наводимая разность потенциалов невелика и составляет примерно несколько вольт на километр, но в протяженных проводниках с низким сопротивлением − линиях связи и электропередач (ЛЭП), трубопроводах, рельсах железных дорог − полная сила индуцированных токов может достигать десятков и сотен ампер.
Наименее защищенными от подобного влияния являются воздушные низковольтные линии связи. Так, значительные помехи, возникавшие во время магнитных бурь, были отмечены уже на самых первых телеграфных линиях, построенных в Европе в первой половине XIX века. Значительные неприятности геомагнитная активность может доставлять и железнодорожной автоматике, особенно в приполярных районах. А в трубах нефте- и газопроводов, тянущихся на многие тысячи километров, индуцированные токи могут значительно ускорять процесс коррозии металла, что приходиться учитывать при проектировании и эксплуатации трубопроводов .

Примеры воздействия магнитных бурь на функционирование линий электропередач

Крупная авария, произошедшая во время сильнейшей магнитной бури 1989 года в энергетической сети Канады, наглядно продемонстрировала опасность магнитных бурь для ЛЭП. Исследования показали, что причиной аварии стали трансформаторы. Дело в том, что постоянная составляющая тока вводит трансформатор в неоптимальный режим работы с избыточным магнитным насыщением сердечника. Это приводит к избыточному поглощению энергии, перегреву обмоток и, в конце концов, к аварии всей системы. Последовавший анализ работоспособности всех энергетических установок Северной Америки выявил статистическую зависимость между количеством сбоев в зонах повышенного риска и уровнем геомагнитной активности .

Влияние магнитных бурь на состояние здоровья людей

В настоящее время имеются результаты медицинских исследований, доказывающих наличие реакции человека на геомагнитные возмущения. Данные исследования показывают, что существует достаточно большая категория людей, на которых магнитные бури действуют отрицательно: активность человека затормаживается, притупляется внимание, обостряются хронические заболевания. Следует отметить, что исследования воздействия геомагнитных возмущений на здоровье человека еще только начинаются, и результаты их достаточно спорны и противоречивы (подробнее см. материалы к теме "Как космическая погода влияет на нашу жизнь?").
Однако большинство исследователей сходится во мнении, что в данном случае существует три категории людей: на одних геомагнитные возмущения действуют угнетающе, на других, наоборот, возбуждающе, у третьих же никакой реакции не наблюдается.

Ионосферные суббури как фактор космической погоды

Суббури являются мощным источником электронов во внешней магнитосфере . Сильно возрастают потоки низкоэнергичных электронов, что приводит к существенному усилению электризации КА (подробнее см. материалы по теме "Электризация космических аппаратов"). Во время сильной суббуревой активности на несколько порядков возрастают потоки электронов во внешнем радиационном поясе Земли (РПЗ), что представляет серьезную опасность для ИСЗ, орбиты которых пересекают эту область, поскольку внутри КА накапливается достаточно большой объемный заряд, приводящий к выходу из строя бортовой электроники . В качестве примера можно привести проблемы с работой электронных приборов на ИСЗ Equator-S, Роlаг и Сalaxy-4, которые возникли на фоне длительной суббуревой активности и, как следствие, очень высоких потоков релятивистских электронов во внешней магнитосфере в мае 1998 г. .
Cуббури являются неотъемлемым спутником геомагнитных бурь, однако, интенсивность и длительность суббуревой активности имеет неоднозначную связь с мощностью магнитной бури. Важным проявлением связи "бури-суббури" является непосредственное влияние мощности геомагнитной бури на минимальную геомагнитную широту, на которой развиваются суббури. Во время сильных геомагнитных бурь суббуревая активность может опускаться с высоких геомагнитных широт, достигая средних широт. В данном случае на средних широтах будет наблюдаться нарушение радиосвязи, вызванное возмущающим воздействием на ионосферу энергичных заряженных частиц, генерируемых во время суббуревой активности.

Взаимосвязь солнечной и геомагнитной активности – современные тенденции

В некоторых современных работах, посвященных проблеме космическое погоды и космического климата, высказывается мысль о необходимости разделения солнечной и геомагнитной активности . На рисунке показано различие между среднемесячными значениями солнечных пятен, традиционно считающимися показателем СА (красный), и АА-индекса (синий), показывающим уровень геомагнитной активности. Из рисунка видно, что совпадение наблюдается далеко не для всех циклов СА.
Дело в том, что в максимумах СА большую долю составляют спорадические бури, за которые ответственны вспышки и КВМ, то есть явления, происходящие в областях Солнца с замкнутыми силовыми линиями. Но в минимумах СА большинство бурь реккурентные, причиной которых является приход к Земле высокоскоростных потоков солнечного ветра, истекающих из корональных дыр - областей с открытыми силовыми линиями. Таким образом, источники геомагнитной активности, по крайней мере, для минимумов СА, имеют существенно различную природу .

Ионизующее электромагнитное излучение солнечных вспышек

В качестве еще одного важного фактора космической погоды следует отдельно отметить ионизующее электромагнитное излучение (ИЭИ) солнечных вспышек. В спокойное время ИЭИ практически полностью поглощается на больших высотах, вызывая ионизацию атомов воздуха. Во время солнечных вспышек потоки ИЭИ от Солнца возрастают на несколько порядков, что приводит к разогреву и дополнительной ионизации верхней атмосферы.
В результате разогрева под воздействием ИЭИ , атмосфера “раздувается”, т.е. плотность ее на фиксированной высоте сильно увеличивается. Это представляет серьезную опасность для низковысотных ИСЗ и пилотируемых ОС, поскольку, попадая в плотные слои атмосферы, КА может быстро потерять высоту. Такая участь постигла американскую космическую станцию «Скайлэб» в 1972 году во время мощной солнечной вспышки - на станции не хватило топлива для возврата на прежнюю орбиту .

Поглощение коротковолнового радиоизлучения

Поглощение коротковолнового радиоизлучения является результатом того, что приход ионизующего электромагнитного излучения − УФ и рентгеновского излучения солнечных вспышек вызывает дополнительную ионизацию верхней атмосферы (см. подробнее в материалах по теме "Транзиентные световые явления в верхней атмосфере Земли"). Это приводит к ухудшению или даже полному прекращению радиосвязи на освещенной стороне Земли в течение несколько часов }