1 электромагнитные колебания. Электромагнитные колебания учебно-методический материал на тему. Сравнение колебательных систем

Цель:

  • Демонстрация нового метода решения задач
  • Развитие абстрактного мышления, умения анализировать сравнивать, обобщать
  • Воспитание чувства товарищества, взаимопомощи, толерантности.

Темы “ Электромагнитные колебания” и “Колебательный контур” – психологически трудные темы. Явления, происходящие в колебательном контуре, не могут быть описаны при помощи человеческих органов чувств. Возможна только визуализация при помощи осциллографа, но и этом случае мы получим графическую зависимость и не можем непосредственно наблюдать за процессом. Поэтому они остаются интуитивно и эмпирически неясны.

Прямая аналогия между механическими и электромагнитными колебаниями помогает упростить понимание процессов и провести анализ изменения параметров электрических цепей. Кроме того упростить решение задач со сложными механическими колебательными системами в вязких средах. При рассмотрении данной темы ещё раз подчеркивается общность, простота и немногочисленность законов, необходимых для описания физических явлений.

Данная тема дается после изучения следующих тем:

  • Механические колебания.
  • Колебательный контур.
  • Переменный ток.

Необходимый набор знаний и умений:

  • Определения: координата, скорость, ускорение, масса, жесткость, вязкость, сила, заряд, сила тока, скорость изменения силы тока со временем (применение этой величины), электрическая емкость, индуктивность, напряжение, сопротивление, ЭДС, гармонические колебания, свободные, вынужденные и затухающие колебания, статическое смещение, резонанс, период, частота.
  • Уравнения, описывающие гармонические колебания (с использованием производных), энергетические состояния колебательной системы.
  • Законы: Ньютона, Гука, Ома (для цепей переменного тока).
  • Умение решать задачи на определение параметров колебательной системы (математический и пружинный маятник, колебательный контур), её энергетических состояний, на определение эквивалентного сопротивления, емкости, равнодействующей силы, параметров переменного тока.

Предварительно в качестве домашнего задания учащимся предлагаются задачи, решение которых значительно упрощается при использовании нового метода и задачи приводящие к аналогии. Задание может быть групповым. Одна группа учащихся выполняет механическую часть работы, другая часть, связанную с электрическими колебаниями.

Домашнее задание.

1а . Груз массой m, прикрепленный к пружине жесткостью k, отвели от положения равновесия и отпустили. Определите максимальное смещение от положения равновесия, если максимальная скорость груза v max

1б . В колебательном контуре, состоящем из конденсатора емкостью С и катушки индуктивности L, максимальное значение силы тока I max . Определите максимальное значение заряда конденсатора.

2а . На пружине жесткостью k подвешен груз массой m. Пружина выводится из состояния равновесия смещением груза от положения равновесия на А. Определите максимальное x max и минимальное x min смещение груза от точки, в которой находился нижний конец нерастянутой пружины и v max максимальную скорость груза.

2б . Колебательный контур состоит из источника тока с ЭДС равной Е, конденсатора емкостью С и катушки, индуктивности L и ключа. До замыкания ключа конденсатор имел заряд q. Определите максимальный q max и q min минимальный заряд конденсатора и максимальный ток в контуре I max.

При работе на уроках и дома используется оценочный лист

Вид деятельности

Самооценка

Взаимооценка

Физический диктант
Сравнительная таблица
Решение задач
Домашняя работа
Решение задач
Подготовка к зачету

Ход урока №1.

Аналогия между механическими и электрическими колебаниями

Введение в тему

1. Актуализация ранее полученных знаний.

Физический диктант с взаимопроверкой.

Текст диктанта

2. Проверка (работа в диадах, или самооценка)

3. Анализ определений, формул, законов. Поиск аналогичных величин.

Явная аналогия прослеживается между такими величинами как скорость и сила тока. . Далее прослеживаем аналогию между зарядом и координатой, ускорением и скоростью изменения силы тока с течением времени. Сила и ЭДС характеризуют внешнее воздействие на систему. По второму закону Ньютона F=ma, по закону Фарадея Е=-L. Следовательно, делаем вывод, что масса и индуктивность аналогичные величины. Необходимо обратить внимание на то, что эти величины сходны и по своему физическому смыслу. Т.е. данную аналогию можно получить и в обратном порядке, что подтверждает её глубокий физический смысл и правильность наших выводов. Далее сравниваем закон Гука F = -kx и определение емкости конденсатора U=. Получаем аналогию между жесткостью (величиной характеризующей упругие свойства тела) и величиной обратной емкости конденсатора (в результате можно говорить о том, что емкость конденсатора характеризует упругие свойства контура). В результате на основе формул потенциальной и кинетической энергии пружинного маятника, и , получаем формулы и . Так как это электрическая и магнитная энергия колебательного контура, то данный вывод подтверждает правильность полученной аналогии. На основании проведенного анализа составляем таблицу.

Пружинный маятник

Колебательный контур

4. Демонстрация решения задач № 1а и № 1б на доске. Подтверждение аналогии.

1а. Груз массой m, прикрепленный к пружине жесткостью k, отвели от положения равновесия и отпустили. Определите максимальное смещение от положения равновесия, если максимальная скорость груза v max

1б. В колебательном контуре, состоящем из конденсатора емкостью С и катушки индуктивности L, максимальное значение силы тока I max . Определите максимальное значение заряда конденсатора.

по закону сохранения энергии

cследовательно

Проверка размерности:

по закону сохранения энергии

Следовательно

Проверка размерности:

Ответ:

Во время выполнения решения задач на доске, учащиеся разделяются на две группы: “Механики” и “Электрики” и при помощи таблицы составляют текст аналогичный тексту задач 1а и 1б . В итоге замечаем, что текст и решение задач подтверждают сделанные нами выводы.

5. Одновременное выполнение на доске решения задач № 2а и по аналогии № 2б . При решении задачи дома должны были возникнуть трудности, так как аналогичные задачи не решались на уроках и процесс, описанный в условии неясен. Решение задачи проблем возникнуть не должно. Параллельное решение задач на доске при активной помощи класса должно привести к выводу о существовании нового метода решения задач через аналогии между электрическими и механическими колебаниями.

Решение:

Определим статическое смещение груза. Так как груз находится в состоянии покоя

Следовательно

Как видно из рисунка,

x max =x ст +А=(mg/k)+A,

x min =x ст -A=(mg/k)-A.

Определим максимальную скорость груза. Смещение от положения равновесия незначительно, следовательно колебания можно считать гармоническими. Примем, что в момент начала отсчета смещение было максимально, тогда

x=Acos t.

Для пружинного маятника =.

=x"=Asin t,

при sin t=1 = max .

По аналогии

7. Самооценка своей деятельности на уроке (вносим оценку в оценочный лист). Отвечаем на вопросы:

  • Какова была цель занятия?
  • Достигнута ли цель в ходе занятия?
  • Каковы еще результаты (личные) занятия?
  • Использовался ли ранее метод аналогии?

8. Домашнее задание: Пинский §10. Задание 10.4, 10.5.

Ход урока №2

Решение задач.

  1. Проверка выполнения домашней работы.
  2. Решение задач. 10.1, 10.2, 10.3.
  3. Анализ возможностей нового метода решения задач. Определение границ его применения.
  4. Домашнее задание: составить вопросы и задание к зачету (три вопроса и две задачи).

Ход урока №3.

Аналогия между механическими и электрическими колебаниями.

Зачет проводится в форме взаимозачета (работа в диадах) по материалам подготовленным дома. Материал к зачету проверяется и оценивается учителем.

На основе оценочных листов выставляется зачетная оценка.

Разработка методики изучения темы «Электромагнитные колебания»

Колебательный контур. Превращения энергии при электромагнитных колебаниях.

Эти вопросы, являющиеся одними из самых важных в данной теме, рассматриваются на третьем уроке.

Сначала вводится понятие колебательного контура, делается соответствующая запись в тетради.

Далее, для выяснения причины возникновения электромагнитных колебаний, демонстрируется фрагмент, где показан процесс зарядки конденсатора. Обращается внимание учащихся на знаки зарядов пластин конденсатора.

После этого рассматриваются энергии магнитного и электрического полей, ученикам рассказывают о том, как изменяются эти энергии и полная энергия в контуре, объясняется механизм возникновения электромагнитных колебаний с использованием модели, ведется запись основных уравнений.

Очень важно обратить внимание учащихся на то, что такое представление тока в цепи (поток заряженных частиц) является условным, так как скорость электронов в проводнике очень мала. Такой способ представления выбран для облегчения понимания сути электромагнитных колебаний.

Далее внимание учащихся акцентируется на том, что они наблюдают процессы превращения энергии электрического поля в энергию магнитного и наоборот, а так как колебательный контур является идеальным (отсутствует сопротивление), то полная энергия электромагнитного поля остается неизменной. После этого дается понятие электромагнитных колебаний и оговаривается, что эти колебания являются свободными. Затем подводятся итоги и дается домашнее задание.

Аналогия между механическими и электромагнитными колебаниями.

Этот вопрос рассматривается на четвертом уроке изучения темы. Вначале для повторения и закрепления можно еще раз продемонстрировать динамическую модель идеального колебательного контура. Для объяснения сути и доказательства аналогии между электромагнитными колебаниями и колебаниями пружинного маятника используются динамическая колебательная модель ”Аналогия между механическими и электромагнитными колебаниями” и презентаций PowerPoint.

В качестве механической колебательной системы рассматривается пружинный маятник (колебания груза на пружине). Выявление связи между механическими и электрическими величинами при колебательных процессах ведется по традиционной методике.

Как это уже было сделано на прошлом занятии, необходимо еще раз напомнить учащимся об условности движения электронов по проводнику, после чего их внимание обращается на правый верхний угол экрана, где находится колебательная система “сообщающиеся сосуды”. Оговаривается, что каждая частица совершает колебания около положения равновесия, поэтому колебания жидкости в сообщающихся сосудах тоже могут служить аналогией электромагнитных колебаний.


Если в конце урока осталось время, то можно более подробно остановиться на демонстрационной модели, разобрать все основные моменты с применением вновь изученного материала.

Уравнение свободных гармонических колебаний в контуре.

Вначале урока демонстрируются динамические модели колебательного контура и аналогии механических и электромагнитных колебаний, повторяются понятия электромагнитных колебаний, колебательного контура, соответствие механических и электромагнитных величин при колебательных процессах.

Новый материал необходимо начать с того, что если колебательный контур идеальный, то его полная энергия с течением времени остается постоянной

т.е. ее производная по времени постоянна, а значит и производные по времени от энергий магнитного и электрического полей тоже постоянны. Затем, после ряда математических преобразований приходят к выводу, что уравнение электромагнитных колебаний аналогично уравнению колебаний пружинного маятника.

Ссылаясь на динамическую модель, учащимся напоминают, что заряд в конденсаторе меняется периодически, после чего ставится задача - выяснить, как зависят от времени заряд, сила тока в цепи и напряжение на конденсаторе.

Данные зависимости находятся по традиционной методике. После того, как найдено уравнение колебаний заряда конденсатора, учащимся демонстрируется картинка, на которой изображены графики зависимости заряда конденсатора и смещения груза от времени, представляющие собой косинусоиды.

По ходу выяснения уравнения колебаний заряда конденсатора вводятся понятия периода колебаний, циклической и собственной частот колебаний. Затем выводится формула Томсона.

Далее получают уравнения колебаний силы тока в цепи и напряжения на конденсаторе, после чего демонстрируется картинка с графиками зависимости трех электрических величин от времени. Внимание учащихся обращается на сдвиг фаз между колебаниями силы тока и зарядами его отсутствием между колебаниями напряжения и заряда.

После того, как выведены все три уравнения, вводится понятие затухающих колебаний и демонстрируется картинка, на которой изображены эти колебания.

На следующем уроке подводятся краткие итоги с повторением основных понятий и решаются задачи на нахождение периода, циклической и собственной частот колебаний, исследуются зависимости q(t), U(t), I(t), а так же различные качественные и графические задачи.

4. Методическая разработка трёх уроков

Приведенные ниже уроки разработаны в виде лекций, так как эта форма, по моему мнению, является наиболее производительной и оставляет в данном случае достаточно времени для работы с динамическими демонстрац ионными моделями. При желании эта форма может быть легко трансформирована в любую другую форму проведения урока.

Тема урока: Колебательный контур. Превращения энергии в колебательном контуре.

Объяснение нового материала.

Цель урока: объяснение понятия колебательного контура и сути электромагнитных колебаний с использованием динамической модели “Идеальный колебательный контур”.

Колебания могут происходить в системе, которая называется колебательным контуром, состоящим из конденсатора емкостью С и катушки индуктивностью L. Колебательный контур называется идеальным, если в нем нет потерь энергии на нагревание соединительных проводов и проводов катушки, т. е. пренебрегают сопротивлением R.

Давайте сделаем в тетрадях чертеж схематичного изображения колебательного контура.

Чтобы возникли электрические колебания в этом контуре, ему необходимо сообщить некоторый запас энергии, т.е. зарядить конденсатор. Когда конденсатор зарядится, то электрическое поле будет сосредоточено между его пластинами.

(Давайте проследим процесс зарядки конденсатора и остановим процесс, когда зарядка будет завершена).

Итак, конденсатор заряжен, его энергия равна

поэтому, следовательно,

Так как после зарядки конденсатор будет иметь максимальный заряд (обратите внимание на пластины конденсатора, на них расположены противоположные по знаку заряды), то при q=q max энергия электрического поля конденсатора будет максимальна и равна

В начальный момент времени вся энергия сосредоточена между пластинами конденсатора, сила тока в цепи равна нулю. (Давайте теперь замкнем на нашей модели конденсатор на катушку). При замыкании конденсатора на катушку он начинает разряжаться и в цепи возникнет ток, который, в свою очередь, создаст в катушке магнитное поле. Силовые линии этого магнитного поля направлены по правилу буравчика.

При разрядке конденсатора ток не сразу достигает своего максимального значения, а постепенно. Это происходит потому, что переменное магнитное поле порождает в катушке второе электрическое поле. Вследствие явления самоиндукции там возникает индукционный ток, который, согласно правилу Ленца, направлен в сторону, противоположную увеличению разрядного тока.

Когда разрядный ток достигает своего максимального значения энергия магнитного поля максимальна и равна:

а энергия конденсатора в этот момент равна нулю. Таким образом, через t=T/4 энергия электрического поля полностью перешла в энергию магнитного поля.

(Давайте понаблюдаем процесс разрядки конденсатора на динамической модели. Обращаю ваше внимание на то, что такой способ представления процессов зарядки и разрядки конденсатора в виде потока перебегающих частиц, является условным и выбран для удобства восприятия. Вы прекрасно знаете, что скорость движения электронов очень мала (порядка нескольких сантиметров в секунду). Итак, вы видите, как, при уменьшении заряда на конденсаторе изменяется сила тока в цепи, как изменяются энергии магнитного и электрического полей, какая между этими изменениями существует связь. Так как контур является идеальным, то потерь энергии нет, поэтому общая энергия контура остается постоянной).

С началом перезарядки конденсатора разрядный ток будет уменьшаться до нуля не сразу, а постепенно. Это происходит опять же из-за возникновения противо э. д. с. и индукционного тока противоположной направленности. Этот ток противодействует уменьшению разрядного тока, как ранее противодействовал его увеличению. Сейчас он будет поддерживать основной ток. Энергия магнитного поля будет уменьшаться, энергия электрического - увеличиваться, конденсатор будет перезаряжаться.

Таким образом, полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей

Колебания, при которых происходит периодическое превращение энергии электрического поля конденсатора в энергию магнитного поля катушки, называются ЭЛЕКТРОМАГНИТНЫМИ колебаниями. Так как эти колебания происходят за счет первоначального запаса энергии и без внешних воздействий, то они являются СВОБОДНЫМИ.

Тема урока: Аналогия между механическими и электромагнитными колебаниями.

Объяснение нового материала.

Цель урока: объяснение сути и доказательство аналогии между электромагнитными колебаниями и колебаниями пружинного маятника с использованием динамической колебательной модели ”Аналогия между механическими и электромагнитными колебаниями” и презентаций PowerPoint.

Материал для повторения:

понятие колебательного контура;

понятие идеального колебательного контура;

условия возникновения колебаний в к/к;

понятия магнитного и электрического полей;

колебания как процесс периодического изменения энергий;

энергия контура в произвольный момент времени;

понятие (свободных) электромагнитных колебаний.

(Для повторения и закрепления учащимся еще раз демонстрируется динамическая модель идеального колебательного контура).

На этом уроке мы рассмотрим аналогию между механическими и электромагнитными колебаниями. В качестве механической колебательной системы будем рассматривать пружинный маятник.

(На экране вы видите динамическую модель, которая демонстрирует аналогию между механическими и электромагнитными колебаниями. Она поможет нам разобраться в колебательных процессах, как в механической системе, так и в электромагнитной).

Итак, в пружинном маятнике упругодеформированная пружина сообщает скорость прикрепленному к ней грузу. Деформированная пружина обладает потенциальной энергией упругодеформированного тела

движущийся груз обладает кинетической энергией

Превращение потенциальной энергии пружины в кинетическую энергию колеблющегося тела является механической аналогией превращения энергии электрического поля конденсатора в энергию магнитного поля катушки. При этом аналогом механической потенциальной энергии пружины является энергия электрического поля конденсатора, а аналогом механической кинетической энергии груза является энергия магнитного поля, которая связана с движением зарядов. Зарядке конденсатора от батареи соответствует сообщение пружине потенциальной энергии (например, смещение рукой).

Давайте сопоставим формулы и выведем общие закономерности для электромагнитных и механических колебаний.

Из сопоставления формул следует, что аналогом индуктивности L является масса m, а аналогом смещения х служит заряд q, аналогом коэффициента k служит величина, обратная электроемкости, т. е. 1/С.

Моменту, кода конденсатор разрядится, а сила тока достигнет максимума, соответствует прохождение телом положения равновесия с максимальной скоростью (обратите внимание на экраны: там вы можете пронаблюдать это соответствие).


Как уже было сказано на прошлом занятии, движение электронов по проводнику является условным, ведь для них основным видом движения является колебательное движение около положения равновесия. Поэтому иногда еще электромагнитные колебания сравнивают с колебаниями воды в сообщающихся сосудах (посмотрите на экран, вы видите, что в правом верхнем углу находится именно такая колебательная система), где каждая частица совершает колебания около положения равновесия.

Итак, мы выяснили, что аналогией индуктивности является масса, а аналогией перемещения является заряд. Но вед вы прекрасно знаете, что изменение заряда в единицу времени - это не что иное, как сила тока, а изменение координаты в единицу времени - скорость, то есть q"= I, а x"= v. Таким образом, мы нашли еще одно соответствие между механическими и электрическими величинами.

Давайте составим таблицу, которая поможет нам систематизировать связи механических и электрических величин при колебательных процессах.

Таблица соответствия между механическими и электрическими величинами при колебательных процессах.


Тема урока: Уравнение свободных гармонических колебаний в контуре.

Объяснение нового материала.

Цель урока: вывод основного уравнения электромагнитных колебаний, законов изменения заряда и силы тока, получения формулы Томсона и выражения для собственной частоты колебания контура с использованием презентаций PowerPoint.

Материал для повторения:

понятие электромагнитных колебаний;

понятие энергии колебательного контура;

соответствие электрических величин механическим величинам при колебательных процессах.

(Для повторения и закрепления необходимо еще раз продемонстрировать модель аналогии механических и электромагнитных колебаний).

На прошлых уроках мы выяснили, что электромагнитные колебания, во-первых, являются свободными, во-вторых, представляют собой периодическое изменение энергий магнитного и электрического полей. Но кроме энергии при электромагнитных колебаниях меняется еще и заряд, а значит и сила тока в контуре и напряжение. На этом уроке мы должны выяснить законы, по которым меняются заряд, а значит сила тока и напряжение.

Итак, мы выяснили, что полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей: . Считаем, энергия не меняется со временем, то есть контур - идеальный. Значит производная полной энергии по времени равна нулю, следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

То есть.

Знак минус в этом выражении означает, что когда энергия магнитного поля возрастает, энергия электрического поля убывает и наоборот. А физический смысл этого выражения таков, что скорость изменения энергии магнитного поля равна по модулю и противоположна по направлению скорости изменения электрического поля.

Вычисляя производные, получим

Но, поэтому и - мы получили уравнение, описывающее свободные электромагнитные колебания в контуре. Если теперь мы заменим q на x, х""=а х на q"", k на 1/C, m на L, то получим уравнение

описывающее колебания груза на пружине. Таким образом, уравнение электромагнитных колебаний имеет такую же математическую форму, как уравнение колебаний пружинного маятника.

Как вы видели на демонстрационной модели, заряд на конденсаторе меняется периодически. Необходимо найти зависимость заряда от времени.

Из девятого класса вам знакомы периодические функции синус и косинус. Эти функции обладают следующим свойством: вторая производная синуса и косинуса пропорциональна самим функциям, взятым с противоположным знаком. Кроме этих двух, никакие другие функции этим свойством не обладают. А теперь вернемся к электрическому заряду. Можно смело утверждать, что электрический заряд, а значит и сила тока, при свободных колебаниях меняются с течением времени по закону косинуса или синуса, т.е. совершают гармонические колебания. Пружинный маятник также совершают гармонические колебания (ускорение пропорционально смещению, взятому со знаком минус).

Итак, чтобы найти явную зависимость заряда, силы тока и напряжения от времени, необходимо решить уравнение

учитывая гармонический характер изменения этих величин.

Если в качестве решения взять выражение типа q = q m cos t , то, при подстановке этого решения в исходное уравнениe, получим q""=-q m cos t=-q.

Поэтому, в качестве решения необходимо взять выражение вида

q=q m cosщ o t,

где q m - амплитуда колебаний заряда (модуль наибольшего значения колеблющейся величины),

щ o = - циклическая или круговая частота. Её физический смысл -

число колебаний за один период, т. е. за 2р с.

Период электромагнитных колебаний - промежуток времени, в течение которого ток в колебательном контуре и напряжение на пластинах конденсатора совершает одно полное колебание. Для гармонических колебаний Т=2р с (наименьший период косинуса).

Частота колебаний - число колебаний в единицу времени - определяется так: н = .

Частоту свободных колебаний называют собственной частотой колебательной системы.

Так как щ o = 2р н=2р/Т, то Т= .

Циклическую частоту мы определили как щ o = , значит для периода можно записать

Т= = - формула Томсона для периода электромагнитных колебаний.

Тогда выражение для собственной частоты колебаний примет вид

Нам осталось получить уравнения колебаний силы тока в цепи и напряжения на конденсаторе.

Так как, то при q = q m cos щ o t получим U=U m cosщ o t. Значит, напряжение тоже меняется по гармоническому закону. Найдем теперь закон, по которому меняется сила тока в цепи.

По определению, но q=q m cosщt, поэтому

где р/2 - сдвиг фаз между силой тока и зарядом (напряжением). Итак, мы выяснили, что сила тока при электромагнитных колебаниях тоже меняется по гармоническому закону.

Мы рассматривали идеальный колебательный контур, в котором нет потерь энергии и свободные колебания могут продолжаться бесконечно долго за счет энергии, однажды полученной от внешнего источника. В реальном контуре часть энергии идет на нагревание соединительных проводов и нагревание катушки. Поэтому свободные колебания в колебательном контуре являются затухающими.

Хотя механические и электромагнитные колебания имеют различную природу, между ними можно провести много аналогий. Например, рассмотрим электромагнитные колебания в колебательном контуре и колебание груза на пружине.

Колебание груза на пружине

При механических колебаниях тела на пружине, координата тела будет периодически изменяться. При этом будем меняться проекция скорости тела на ось Ох. В электромагнитных колебаниях с течение времени по периодическому закону будет изменяться заряд q конденсатора, и сила тока в цепи колебательного контура.

Величины будут иметь одинаковый характер изменения. Это происходит потому, что имеется аналогия между условиями, в которых возникают колебания. Когда мы отводим груз на пружине из положения равновесии, в пружине возникает сила упругости F упр., которая стремится вернуть груз обратно, в положение равновесия. Коэффициентом пропорциональности этой силы будет являться жесткость пружины k.

При разрядке конденсатора в цепи колебательного контура появляется ток. Разрядка обусловлена тем, что на пластинах конденсатора есть напряжение u. Это напряжение будет пропорционально заряду q любой из пластин. Коэффициентом пропорциональности будет служить величина 1/C, Где С – емкость конденсатора.

При движении груза на пружине, когда мы отпускаем его, скорость тела увеличивается постепенно, вследствие инертности. И после прекращения силы скорость тела не становится сразу равной нулю, она тоже постепенно уменьшается.

Колебательный контур

Так же и в колебательном контуре. Электрический ток в катушке под действием напряжения увеличивается не сразу, а постепенно, из-за явления самоиндукции. И когда напряжение перестает действовать, сила тока не становится сразу равной нулю.

То есть в колебательном контуре индуктивность катушки L будет аналогична массе тела m, при колебаниях груза на пружине. Следовательно, кинетическая энергия тела (m*V^2)/2, будет аналогична энергии магнитного поля тока (L*i^2)/2.

Когда мы выводим груз из положения равновесия, мы сообщаем уме некоторую потенциальную энергию (k*(Xm)^2)/2, где Хm - смещение от положения равновесия.

В колебательном контуре роль потенциальной энергии выполняет энергия заряда конденсатора q^2/(2*C). Можем сделать вывод, что жесткость пружины в механических колебаниях будет аналогична величине 1/С, где С- емкость конденсатора в электромагнитных колебаниях. А координата тела будет аналогична заряду конденсатора.

Рассмотрим подробнее процессы колебаний, на следующем рисунке.

картинка

(а) Сообщаем телу потенциальную энергию. По аналогии заряжаем конденсатор.

(б) Отпускаем шарик, потенциальная энергия начинает уменьшаться, возрастает скорость шарика. По аналогии, начинает уменьшаться заряд на обкладке конденсатора, в цепи появляется сила тока.

(в) Положение равновесия. Потенциальной энергии нет, скорость тела максимальна. Конденсатор разрядился, сила тока в цепи максимальна.

(д) Тело отклонилось в крайнее положении, скорость его стала равной нулю, а потенциальная энергия достигла своего максимума. Конденсатор снова зарядился, сила тока в цепи стала равняться нулю.

Дата 05.09.2016

Тема: «Механические и электромагнитные колебания. Аналогия между механическими и электромагнитными колебаниями.»

Цель:

    провести полную аналогию между механическими и электромагнитными колебаниями, выявив сходство и различие между ними

    научить обобщению, синтезу, анализу и сравнению теоретического материала

    воспитание отношения к физике, как к одному из фундаментальных компонентов естествознания.

ХОД УРОКА

Проблемная ситуация: Какое физическое явление мы будем наблюдать, если отклонить шарик от положения равновесия и опустить? (продемонстрировать)

Вопросы классу: Какое движение совершает тело? Сформулируйте определение колебательного процесса.

Колебательный процесс - это процесс, который повторяется через определённые промежутки времени.

1. Сравнительные характеристики колебаний

Фронтальная работа с классом по плану (проверка осуществляется через проектор).

    Определение

    Как можно получить? (с помощью чего и что для этого надо сделать)

    Можно ли увидеть колебания?

    Сравнение колебательных систем.

    Превращение энергии

    Причина затуханий свободных колебаний.

    Аналогичные величины

    Уравнение колебательного процесса.

    Виды колебаний.

    Применение

Учащиеся в ходе рассуждений приходят к полному ответу на поставленный вопрос и сравнивают его с ответом на экране.

кадр на экране

Механические колебания

Электромагнитные колебания

Сформулируйте определения механических и электромагнитных колебаний

это периодические изменения координаты, скорости и ускорения тела.

это периодические изменения заряда, силы тока и напряжения

Вопрос учащимся: Что общего в определениях механических и электромагнитных колебаний и чем они отличаются!

Общее: в обоих видах колебаний происходит периодическое изменение физических величин.

Отличие: В механических колебаниях - это координата, скорость и ускорение В электромагнитных - заряд, сила тока и напряжение.

Вопрос учащимся

кадр на экране

Механические колебания

Электромагнитные колебания

Как можно получить колебания?

С помощью колебательной системы (маятников)

С помощью колебательной системы (колебательного контура), состоящего из конденсатора и катушки.

а) пружинного;

б) математического

Вопрос учащимся: Что общего в способах получения и чем они отличаются?

Общее: и механические, и электромагнитные колебания можно получить с помощью колебательных систем

Отличие: различные колебательные системы - у механических - это маятники,
а у электромагнитных - колебательный контур.

Демонстрация учителя: показать нитяной, вертикальный пружинный маятники и колебательный контур.

кадр на экране

Механические колебания

Электромагнитные колебания

«Что необходимо сделать, чтобы в колебательной системе возникли колебания?»

Вывести маятник из положения равновесия: отклонить тело от положения равновесия и опустить

вывести контур из положения равновесия: зарядить конденса­ тор от источника постоянного напряжения (ключ в положении 1), а затем перевести ключ в положение 2.

Демонстрация учителя: Демонстрации механических и электромагнитных колебаний (можно использовать видеосюжеты)

Вопрос учащимся: « Что общего в показанных демонстрациях и их отличие?»

Общее: колебательная система выводилась из положения равновесия и получала запас энергии.

Отличие: маятники получали запас потенциальной энергии, а колебательная система - запас энергии электрического поля конденсатора.

Вопрос учащимся: Почему электромагнитные колебания нельзя наблюдать также как и механические (визуально)

Ответ: так как мы не можем увидеть, как происходит зарядка и перезарядка конденсатора, как течёт ток в контуре и в каком направлении, как меняется напряжение между пластинами конденсатора

2 Работа с таблицами

Сравнение колебательных систем

Работа учащихся с таблицей № 1 , в которой заполнена верхняя часть (состояние колебательного контура в различные моменты времени), с самопроверкой на экране.

Задание: заполнить среднюю часть таблицы (провести аналогию между состоянием колебательного контура и пружинного маятника в различные моменты времени)

Таблица № 1: Сравнение колебательных систем

После заполнения таблицы на экран проецируется заполненные 2 части таблицы и учащиеся сравнивают свою таблицу с той, что на экране.

Кадр на экране

Вопрос учащимся: посмотрите на эту таблицу и назовите аналогичные величины:

Ответ: заряд - смещение, сила тока - скорость.

Дома: заполнить нижнюю часть таблицы № 1 (провести аналогию между состоянием колебательного контура и математического маятника в различные моменты времени).

Превращение энергии в колебательном процессе

Индивидуальная работа учащихся с таблицей № 2 , в которой заполнена правая часть (превращение энергии в колебательном процессе пружинного маятника) с самопроверкой на экране.

Задание учащимся: заполнить левую часть таблицы, рассмотрев превращение энергии в колебательном контуре в различные моменты времени (можно использовать учебник или тетрадь).

на конденсаторе находится максимальный заряд – q m ,

смещение тела от положения равновесия максимально – x m ,


при замыкании цепи конденсатор начинает разряжаться через катушку; возникает ток и связанное с ним магнитное поле. Вследствие самоин дукции сила тока нарастает постепенно

тело приходит в движение, его скорость возрастает постепенно вследствие инертности тела

конденсатор разрядился, сила тока максимальна – I m ,

при прохождении положения равновесия скорость тела макси мальна – v m ,

вследствие самоиндукции сила тока уменьшается постепенно, в катушке возникает индукционный ток и конденсатор начинает перезаряжаться

тело, достигнув положение равновесия, продолжает движение по инерции с постепенно уменьшаю щейся скоростью

конденсатор перезарядился, знаки заряда на обкладках поменялись

пружина максимально растянута, тело сместилось в другую сторону

разрядка конденсатора возобнов ляется, ток течёт в другом направле нии, сила тока постепенно растёт

тело начинает движение в противо положном направлении, скорость постепенно растёт

конденсатор полностью разрядился, сила тока в цепи максимальна - I m

тело проходит положение равнове сия, его скорость максимальна - v m

вследствие самоиндукции ток продол жает течь в том же направлении, конденсатор начинает заряжаться

по инерции тело продолжает двигаться в том же направлении к крайнему положению

конденсатор снова заряжен, ток в цепи отсутствует, состояние контура аналогично первоначальному

смещение тела максимально. Его скорость равна 0 и состояние аналогично первоначальному


После индивидуальной работы с таблицей учащиеся анализируют свою работу, сравнивая свою таблицу с той, что на экране.

Вопрос классу: аналогию каких величин вы увидели в этой таблице?

Ответ: кинетическая энергия - энергия магнитного поля,

потенциальная энергия - энергия электрического поля

инерция - самоиндукция

смещение - заряд, скорость - сила тока.

Затухание колебаний:

Вопрос учащимся

кадр на экране

Механические колебания

электромагнитные колебания

Почему свободные колебания затухают?

колебания затухают под действием силы трения (сопротивления воздуха)

колебания затухают, так как контур обладает сопротивлением

Вопрос учащимся: аналогию каких величин вы здесь увидели?

Ответ: коэффициента трения и сопротивления

В результате заполнения таблиц учащиеся пришли к выводу, что существуют аналогичные величины.

Кадр на экране:

Аналогичные величины:

Дополнение учителя: аналогичными так же являются: масса - индуктивность, жёсткость - величина, обратная ёмкости.

Видеосюжеты: 1) возможные видеосюжеты свободных колебаний

Механические колебания

Электромагнитные колебания

шарик на нити, качели, ветка дерева, после того как с неё слетела птица, струна гитары

колебания в колебательном контуре


2) возможные видеосюжеты вынужденных колебаний:

игла швейной машины, качели, когда их раскачивают, ветка дерева на ветру, поршень в двигателе внутреннего c горания

работа электробытовых приборов, линии электропередач, радио, телевидение, телефонная связь, магнит, который вдвигают в катушку


кадр на экране

Механические колебания

Электромагнитные колебания

Сформулируйте Определения свободных и вынужденных колебаний.

Свободные - это колебания, которые происходят без воздействия внешней силы Вынужденные - это колебания, которые происходят под воздействием внешней перио дической силы.

Свободные - это колебания, которые происходят без воздействия переменной ЭДС Вынужденные - это колебания, которые происходят под воздействием переменной ЭДС

Вопрос учащимся: Что общего в этих определениях?

Ответ; свободные колебания происходят без воздействия внешней силы, а вынужденные - под воздействием внешней периодической силы.

Вопрос учащимся: Какие ещё виды колебаний вы знаете? Сформулируйте определение.

Ответ: Гармонические колебания - это колебания, которые происходят по закону синуса или косинуса.

Возможные применения колебаний:

    Колебание геомагнитного поля Земли под действием ультрафиолетовых лучей и солнечного ветра (видеосюжет)

    Влияние колебаний магнитного поля Земли на живые организмы, движение клеток крови (видеосюжет)

    Вредная вибрация (разрушение мостов при резонансе, разрушение самолётов при вибрации) - видеосюжет

    Полезная вибрация (полезный резонанс при уплотнении бетона, вибросортировка - видеосюжет

    Электрокардиограмма работы сердца

    Колебательные процессы в человеке (колебание барабанной перепонки, голосовых связок, работа сердца и лёгких, колебания клеток крови)

Дома: 1) заполнить таблицу № 3 (используя аналогию вывести формулы для колебательного процесса математического маятника и колебательного контура),

2) заполнить таблицу № 1 до конца (провести аналогию между состояниями колебательного контура и математического маятника в различные моменты времени.

Выводы по уроку: в ходе урока учащиеся провели сравнительный анализ на основе ранее изученного материала, тем самым систематизировали материал по теме: «Колебания»; рассмотрели применение на примерах из жизни.

Таблица №3. Уравнение колебательного процесса

Выразим h через х из подобия ∆АОЕ и ∆АВС


§ 29. Аналогия между механическими и электромагнитными колебаниями

Электромагнитные колебания в контуре имеют сходство со свободными механическими колебаниями, например с колебаниями тела, закрепленного на пружине (пружинный маятник). Сходство относится не к природе самих величин, которые периодически изменяются, а к процессам периодического изменения различных величин.

При механических колебаниях периодически изменяются координата тела х и проекция его скорости v x , а при электромагнитных колебаниях изменяются заряд q конденсатора и сила тока i в цепи. Одинаковый характер изменения величин (механических и электрических) объясняется тем, что имеется аналогия в условиях, при которых возникают механические и электромагнитные колебания.

Возвращение к положению равновесия тела на пружине вызывается силой упругости F x упр, пропорциональной смещению тела от положения равновесия. Коэффициентом пропорциональности является жесткость пружины k .

Разрядка конденсатора (появление тока) обусловлена напряжением и между пластинами конденсатора, которое пропорционально заряду q . Коэффициентом пропорциональности является величина обратная емкости, так как

Подобно тому как, вследствие инертности, тело лишь постепенно увеличивает скорость под действием силы и эта скорость после прекращения действия силы не становится сразу равной нулю, электрический ток в катушке за счет явления самоиндукции увеличивается под действием напряжения постепенно и не исчезает сразу, когда это напряжение становится равным нулю. Индуктивность контура L выполняет ту же роль, что и масса тела m при механических колебаниях. Соответственно кинетическая энергия тела аналогична энергии магнитного поля тока

Зарядка конденсатора от батареи аналогична сообщению телу, прикрепленному к пружине, потенциальной энергии при смещении тела на расстояние х m от положения равновесия (рис. 4.5, а). Сравнивая это выражение с энергией конденсатора замечаем, что жесткость k пружины выполняет при механических колебаниях такую же роль, как величина обратная емкости, при электромагнитных колебаниях. При этом начальная координата х m соответствует заряду q m .

Возникновение в электрической цепи тока i соответствует появлению в механической колебательной системе скорости тела v х под действием силы упругости пружины (рис. 4.5, б).

Момент времени, когда конденсатор разрядится, а сила тока достигнет максимума, аналогичен тому моменту времени, когда тело будет проходить с максимальной скоростью (рис. 4.5, в) положение равновесия.

Далее конденсатор в ходе электромагнитных колебаний начнет перезаряжаться, а тело в ходе механических колебаний - смещаться влево от положения равновесия (рис. 4.5, г). По прошествии половины периода Т конденсатор полностью перезарядится и сила тока станет равной нулю.

При механических колебаниях этому соответствует отклонение тела в крайнее левое положение, когда его скорость равна нулю (рис. 4.5, д). Соответствие между механическими и электрическими величинами при колебательных процессах можно свести в таблицу.

Электромагнитные и механические колебания имеют разную природу, но описываются одинаковыми уравнениями.

Вопросы к параграфу

1. В чем проявляется аналогия между электромагнитными колебаниями в контуре и колебаниями пружинного маятника?

2. За счет какого явления электрический ток в колебательном контуре не исчезает сразу, когда напряжение на конденсаторе становится равным нулю?