Теплопроводность металлов и ее применение. Фазовые переходы и структура

– первый по значимости и распространенности конструкционный материал. Известен он с глубокой древности, а свойства его таковы, что когда железо научились выплавлять в значимом количестве, металл вытеснил все остальные сплавы. Наступил век железа и, судя по , время это закончится нескоро. Данная статья расскажет вам, какова удельная плотность железа, какая у него температура плавления в чистом виде.

Железо – типичный металл, причем химически активный. Вещество вступает в реакцию при нормальной температуре, а нагрев или повышение влажности значительно увеличивают его реакционноспособность. Железо корродирует на воздухе, горит в атмосфере чистого кислорода, а в виде мелкой пыли способно воспламениться и на воздухе.

Чистому железу присуща ковкость, однако в таком виде металл встречается очень редко. На деле под железом подразумевают сплав с небольшими долями примесей – до 0,8%, которому присущи мягкость и ковкость чистого вещества. Значение для народного хозяйства имеет сплавы с углеродом – сталь, чугун, нержавеющая сталь.

Железу присущ полиморфизм: выделяют целых 4 модификации, отличающиеся структурой и параметрами решетки:

  • α-Fe – существует от нуля до +769 С. Имеет объемно-центрированную кубическую решетку и является ферромагнетиком, то есть, сохраняет намагниченность в отсутствие внешнего магнитного поля. +769 С – точки Кюри для металла;
  • от +769 до +917 С появляется β-Fe. От α-фазы она отличается лишь параметрами решетки. Практически все физические свойства при этом сохраняются за исключением магнитных: железо становится парамагнетиком, то есть, способность намагничиваться оно утрачивает и втягивается в магнитное поле. Металловедение β-фазу как отдельную модификацию не рассматривает. Поскольку переход не влияет на значимые физические характеристики;
  • в диапазоне от 917 до 1394 С существует γ-модификация, которой присуща гранецентрированная кубическая решетка;
  • при температуре выше +1394 С появляется δ-фаза, для которой характерна объемно-центрированная кубическая решетка.

При высоком давлении, а также при легировании металла некоторыми добавками образуется ε- фаза с гексагонической плотноупакованной решеткой.

Температура фазовых переходов заметно изменяется при легировании тем же углеродом. Собственно, сама способность железа образовать столько модификаций служит основой обработки стали в разных температурных режимах. Без таких переходов металл не получил бы столь широкого распространения.

Теперь настал черед свойств металла железа.

О структуре железа рассказывает этот видеосюжет:

Свойства и характеристики металла

Железо – достаточно легкий, умеренно тугоплавкий металл, серебристо-серого цвета. Легко реагирует с разбавленными кислотами и поэтому считается элементом средней активности. На воздухе – сухом, металл постепенно покрывается пленкой оксида, которая препятствует дальнейшей реакции.

Но при самой небольшой влажности вместо пленки появляется ржавчина – рыхлая и неоднородная по составу. Ржавчина дальнейшей коррозии железа не препятствует. Однако физические свойства металла, а, главное, его сплавов с углеродом таковы, что, несмотря на низкую коррозийную стойкость, использование железа более чем оправдано.

Масса и плотность

Молекулярная масса железа составляет 55,8, что указывает на относительную легкость вещества. А какая же у железа плотность? Такой показатель определяется фазовой модификацией:

  • α-Fe – 7,87 г/куб. см при 20 С, и 7,67 г/куб. см при 600 С;
  • γ-фаза отличается еще более низкой плотностью – 7,59 г/куб см при 1000С;
  • плотность δ-фазы составляет 7,409 г/куб см.

С повышением температуры плотность железа закономерно падает.

А теперь давайте узнаем, какова температура плавления железа по Цельсию, сравнивая ее, например, с или чугуном.

Температурный диапазон

Металл относится к умеренно тугоплавким, что означает сравнительно невысокую температуру изменения агрегатного состояния:

  • температура плавления – 1539 С;
  • температура кипения – 2862 С;
  • температура Кюри, то есть, утраты способности к намагничиванию – 719 С.

Стоит иметь в виду, что когда говорят о температуре плавления или кипения, имеют дело с δ-фазой вещества.

Данное видео поведает вам о физических и химических свойствах железа:

Механические характеристики

Железо и его сплавы настолько распространены, что хотя и стали использоваться позже чем, например, и , стали своеобразными эталонами. Когда сравнивают металлы, указывают на железо: крепче, чем сталь, мягче железа в 2 раза и так далее.

Характеристики приводятся для металла, включающего малые доли примесей:

  • твердость по шкале Мооса – 4–5;
  • твердость по Бринеллю – 350–450 Мн/кв. м. Причем у химически чистого железа твердость выше – 588–686;

Показатели прочности исключительно сильно зависят от количества и характера примесей. Эта величина регламентируется ГОСТом для каждой марки сплава или чистого метала. Так, предел прочности на сжатие для нелегированной стали составляет 400–550 МПа. При закалке этой марки предел прочности при растяжении увеличивается до 700 МПа.

  • ударная вязкость металла составляет 300 Мн/кв м;
  • предел текучести –100 Мн/кв. м.

О том, что надо для определения удельной теплоемкости железа, узнаем далее.

Теплоемкость и теплопроводность

Как и всякий металл, железо проводит тепло, хотя показатели его в этой области невысоки: по теплопроводности металл уступает алюминию – в 2 раза меньше, и – в 5 раз.

Теплопроводность при 25 С составляет 74,04 вт/(м·К). Величина зависит от температуры;

  • при 100 к теплопроводность составляет 132 [Вт/(м.К)];
  • при 300 К – 80,3 [Вт/(м.К)];
  • при 400 – 69,4 [Вт/(м.К)];
  • а при 1500 – 31,8 [Вт/(м.К)].
  • Коэффициент температурного расширения при 20 С – 11,7·10-6.
  • Теплоемкость металла определяется его фазовой структурой и довольно сложно зависит от температуры. С повышением до 250 С, теплоемкость медленно увеличивается, затем резко возрастает до достижения точки Кюри, а потом начинается снижаться.
  • Удельная теплоемкость в температурном диапазоне от 0 до 1000С составляет 640,57 дж/(кг·К).

Электропроводность

Железо проводит ток, но далеко не так хорошо, как медь и серебро. Удельное электрическое сопротивление металла при нормальных условиях – 9,7·10-8 ом·м.

Поскольку железо является ферромагнетиком, его показатели в этой области более значимы:

  • магнитная индукция насыщения составляет 2,18 Тл;
  • магнитная проницаемость – 1,45.106.

Токсичность

Металл не представляет опасности для человеческого организма. стали и изготовления изделий из железа могут быть опасными, но только за счет высоких температур и тех добавок, которые используют при производстве различных сплавов. Отходы железа – металлолом, представляют опасность для окружающей среды, но вполне умеренную, поскольку металл ржавеет на воздухе.

Железо не обладает биологической инертностью, поэтому как материал для протезирования не используется. Однако в человеческом организме этот элемент играет одну из важнейших ролей: нарушение в усвоении железа или недостаточное количество последнего в рационе гарантирует в лучшем случае анемию.

Усваивается железо с большим трудом – 5–10% от всего количества, поступаемого в организм, или 10–20%, если наблюдается его недостаток.

  • Обычная суточная потребность в железе составляет 10 мг для мужчин и 20 мг для женщин.
  • Токсическая доза – 200 мг/сутки.
  • Летальная – 7–35 г. Получить такое количество железа практически невозможно, поэтому отравление железом встречается крайне редко.

Железо – металл, чьи физические характеристики, в частности, прочность, можно существенно изменить, прибегая к механической обработке или добавке очень небольшого количества легирующих элементов. Эта особенность в сочетании с доступностью и легкостью добычи металла делает железо самым востребованным конструкционным материалом.

Еще больше о свойствах железа расскажет специалистка в видео ниже:

Введение

Определение коэффициента теплопроводности металлов играет важную роль в некоторых областях, например в металлургии, радиотехнике, машиностроении, строительстве. В настоящее время существует множество различных методов, с помощью которых можно определить коэффициент теплопроводности металлов.

Данная работа посвящена изучению основного свойства металлов - теплопроводности, а также изучению методов исследования теплопроводности.

Объектом исследования является теплопроводность металлов, а так же различные методы лабораторных исследований.

Предмет исследования - коэффициенты теплопроводности металлов.

Планируемый результат - постановка лабораторной работы «Определение коэффициента теплопроводности металлов» на основе калориметрического метода.

Для реализации поставленной цели необходимо решить следующие задачи:

Изучение теории теплопроводности металлов;

Изучение методов определения коэффициента теплопроводности;

Подбор лабораторного оборудования;

Экспериментальное определение коэффициента теплопроводности металлов;

Постановка лабораторной работы «Определение коэффициента теплопроводности металлов».

Работа состоит из трёх глав, в которых раскрыты поставленные задачи.

Теплопроводность металлов

Закон Фурье

Теплопроводность - это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Теплопроводность определяется тепловым движением микрочастиц тела.

Основным законом передачи тепла теплопроводностью является закон Фурье. Согласно этому закону количество тепла dQ, передаваемое посредством теплопроводности через элемент поверхности dF, перпендикулярный тепловому потоку, за время dф прямо пропорционально температурному градиенту, поверхности dF и времени dф.

Коэффициент пропорциональности л называется коэффициентом теплопроводности. Коэффициент теплопроводности - теплофизическая характеристика вещества, характеризует способность вещества проводить теплоту.

Знак минус в формуле (1) указывает на то, что теплота передается в направлении уменьшения температуры.

Количество теплоты, прошедшее в единицу времени через единицу изотермической поверхности, называется тепловым потоком:

Закон Фурье применим для описания теплопроводности газов, жидкостей и твердых тел, различие будет только в коэффициентах теплопроводности.

Коэффициент теплопроводности металлов и его зависимость от параметров состояния вещества

Коэффициент теплопроводности - теплофизическая характеристика вещества, характеризует способность вещества проводить теплоту.

Коэффициент теплопроводности - количество теплоты, проходящее в единицу времени через единичную площадку, перпендикулярно grad t.

Для различных веществ коэффициент теплопроводности различен и зависит от структуры, плотности, влажности, давления и температуры. Эти обстоятельства должны учитываться при использовании справочных таблиц.

Наибольшее значение имеет коэффициент теплопроводности металлов, для которых. Наиболее теплопроводным металлом является серебро, затем идут чистая медь, золото, алюминий и т.д. Для большинства металлов рост температуры приводит к уменьшению коэффициента теплопроводности. Эта зависимость может быть приближенно аппроксимирована уравнением прямой линии

здесь л, л0 - соответственно коэффициенты теплопроводности при данной температуре t и при 00C, в - температурный коэффициент. Коэффициент теплопроводности металлов очень чувствителен к примесям.

Например, при появлении в меди даже следов мышьяка её коэффициент теплопроводности снижается с 395 до 142; для стали при 0,1 % углерода л = 52 , при 1,0 % - л = 40 , при 1,5 % углерода л=36 .

На коэффициент теплопроводности влияет и термическая обработка. Так, у закаленной углеродистой стали л на 10 - 25% ниже, чем у мягкой. По этим причинам коэффициенты теплопроводности торговых образцов металла при одинаковых температурах могут существенно различаться. Следует отметить, что для сплавов, в отличие от чистых металлов, характерно увеличение коэффициента теплопроводности с ростом температуры. К сожалению, установить какие - либо общие количественные закономерности, которым подчиняется коэффициент теплопроводности сплавов, пока не удалось.

Величина коэффициента теплопроводности строительных и теплоизоляционных материалов - диэлектриков во много раз меньше, чем у металлов и составляет 0,02 - 3,0 . Для подавляющего большинства из них (исключение составляет магнезитовый кирпич) с ростом температуры коэффициент теплопроводности возрастает. При этом можно пользоваться уравнением (3), имея ввиду, что для твердых тел - диэлектриков в>0.

Многие строительные и теплоизоляционные материалы имеют пористое строение (кирпич, бетон, асбест, шлак и др.). Для них и порошкообразных материалов коэффициент теплопроводности существенно зависит от объемной плотности. Это обусловлено тем, что с ростом пористости, большая часть объема заполняется воздухом, коэффициент теплопроводности которого очень низок. Вместе с тем, чем выше пористость, тем ниже объемная плотность материала. Таким образом, уменьшение объемной плотности материала, при прочих равных условиях, приводит к уменьшению л.

Например, для асбеста уменьшение объемной плотности с 800 кг/м, до 400 кг/м, приводит к уменьшению с 0,248 до 0,105 . Очень велико влияние влажности. Например, для сухого кирпича л = 0,35, для жидкости 0,6, а для влажного кирпича л=1,0 .

На эти явления надо обращать внимание при определении и технических расчетах теплопроводности. Коэффициент теплопроводности капельных жидкостей лежит в пределах 0,08 - 0,7 . При этом, для подавляющего большинства жидкостей с повышением температуры коэффициент теплопроводности убывает. Исключение составляют вода и глицерин.

Коэффициент теплопроводности газов еще ниже.

Коэффициент теплопроводности газов растет с повышением температуры. В пределах от 20 мм.рт.ст. до 2000 ат (бар), т.е. в области, которая наиболее часто встречается на практике, л от давления не зависит. Следует иметь в виду, что для смеси газов (дымовые газы, атмосфера термических печей и т.п.) расчетным путем определить коэффициент теплопроводности невозможно. Поэтому при отсутствии справочных данных достоверная величина л может быть найдена лишь опытным путем.

При значении л < 1 - вещество называют тепловым изолятором.

Для решения задач теплопроводности необходимо располагать сведениями о некоторых макроскопических свойствах (теплофизических параметрах) вещества: коэффициенте теплопроводности, плотности, удельной теплоемкости.

Объяснение теплопроводности металлов

Теплопроводность металлов очень велика. Она не сводится к теплопроводности решетки, следовательно, здесь должен действовать ещё один механизм передачи тепла. Оказывается, что в чистых металлах теплопроводность осуществляется практически полностью за счет электронного газа, и лишь в сильно загрязненных металлах и сплавах, где проводимость мала, вклад теплопроводности решетки оказывается существенным.

Численную характеристику теплопроводности материала можно определить количеством теплоты, проходящей сквозь материал определённой толщины за определённое время. Численная характеристика важна при расчете теплопроводности различных профильных изделий.

Коэффициенты теплопроводности различных металлов

Для осуществления теплопроводности обязательно требуется непосредственный физический контакт, осуществляемый между двумя телами. Значит, передача тепла осуществима только между твёрдыми телами и неподвижными жидкостями. Непосредственный контакт даёт возможность кинетической энергии перейти от молекул наиболее теплого вещества к наиболее холодному. Обмен тепла происходит при непосредственном прикосновении разных по температуре тел друг к другу.

Здесь следует обратить внимание на то, что молекулы теплого тела не могут проникать в холодное тело. Происходит только передача кинетической энергии, что и даёт равномерное распределение тепла. Такая передача энергии будет продолжаться, пока соприкасающиеся тела не станут равномерно тёплыми. В таком случае достигается тепловое равновесие. На основании этих знаний можно рассчитать, какой утеплительный материал потребуется для устройства теплоизоляции того или другого здания.

Тепло - это одна из форм энергии, которая заключена в движении атомов в веществе. Энергию этого движения мы и измеряем термометром, хоть и не напрямую.
Как и все другие виды энергии, теплота может передаваться от тела к телу. Происходит это всегда, когда есть тела разной температуры. При этом им необязательно даже находиться в соприкосновении, так существует несколько способов передачи тепла. А именно:

Теплопроводность. Это передача тепла при непосредственном контакте двух тел. (Тело может быть и одно, если его части разной температуры.) При этом чем больше разность температур тел и чем больше площадь их контакта - тем больше тепла передаётся каждую секунду. Помимо этого, количество передаваемого тепла зависит от материала - например, большинство металлов хорошо проводят тепло, а дерево и пластик - гораздо хуже. Величину, характеризующую эту способность передавать тепло, тоже называют теплопроводностью (более корректно - коэффициент теплопроводности), что может приводить к некоторой путанице.

Если необходимо измерить теплопроводность какого-либо материала, то обычно это проводят в следующем эксперименте: изготовляется стержень из интересующего материала и один его конец поддерживается при одной температуре, а другой - при отличной, например более низкой, температуре. Пусть, например, холодный конец будет помещён в воду со льдом - таким образом будет поддерживаться постоянная температура, а измеряя скорость таяния льда можно судить о количестве полученного тепла. Деля количество тепла (а вернее - мощность) на разность температур и поперечное сечение стержня и умножая на его длину, получаем коэффициент теплопроводности, измеряющийся, как следует из вышенаписанного, в Дж*м/К*м 2 *с, то есть в Вт/К*м. Ниже вы видите таблицу теплопроводности некоторых материалов.

Материал Теплопроводность, Вт/(м·K)
Алмаз 1001—2600
Серебро 430
Медь 401
Оксид бериллия 370
Золото 320
Алюминий 202—236
Кремний 150
Латунь 97—111
Хром 107
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь 47
Оксид алюминия 40
Кварц 8
Гранит 2,4
Бетон сплошной 1,75
Базальт 1,3
Стекло 1-1,15
Термопаста КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Стекловата 0,032-0,041
Каменная вата 0,034-0,039
Воздух (300 K, 100 кПа) 0,022

Как видно, теплопроводность различается на много порядков. Удивительно хорошо проводят тепло алмаз и оксиды некоторых металлов (по сравнению с другими диэлектриками), плохо проводят тепло воздух, снег и термопаста КПТ-8.

Но мы привыкли считать, что воздух хорошо проводит тепло, а вата - нет, хотя она может на 99% состоять из воздуха. Дело в конвекции. Горячий воздух легче холодного, и "всплывает" наверх, порождая постоянную циркуляцию воздуха вокруг нагретого или сильно охлаждённого тела. Конвекция на порядок улучшает теплопередачу: при её отсутствии было бы очень затруднительно вскипятить кастрюлю воды, не перемешивая её постоянно. А в диапазоне от 0°С до 4°С вода при нагревании сжимается , что приводит к конвекции в противоположном от привычного направлении. Это приводит к тому, что независимо от температуры воздуха, на дне глубоких озёр температура всегда устанавливается равной 4°C

Для уменьшения теплоотдачи из пространства между стенками термосов откачивают воздух. Но надо отметить, что теплопроводность воздуха мало зависит от давления вплоть до 0,01мм рт.ст, то есть границы глубокого вакуума. Этот феномен объясняется теорией газов.

Ещё один способ теплопередачи - это излучение. Все тела излучают энергию в виде электромагнитных волн, но только достаточно сильно нагретые (~600°С) излучают в видимом нами диапазоне. Мощность излучения даже при комнатной температуре достаточно большая - порядка 40мВт с 1см 2 . В пересчёте на площадь поверхности человеческого тела (~1м 2) это составит 400Вт. Спасает лишь то, что в привычном нам окружении все тела вокруг также излучают с примерно той же мощностью. Мощность излучения, кстати, сильно зависит от температуры (как T 4) , согласно закону Стефана-Больцмана . Расчёты показывают, что, например, при 0°С мощность теплового излучения примерно в полтора раза слабее, чем при 27°С.

В отличие от теплопроводности, излучение может распространяться в полном вакууме - именно благодаря нему живые организмы на Земле получают энергию Солнца. Если теплопередача излучением нежелательна, то её минимизируют, ставя непрозрачные перегородки между холодным и горячим объектами, либо уменьшают поглощение излучения (и испускание, кстати, в ровно той же степени), покрывая поверхность тонким зеркальным слоем металла, например, серебра.

  • Данные по теплопроводности взяты из Wikipedia, а туда они попали из справочников, таких, как:
  • «Физические величины» под ред. И. С. Григорьева
  • CRC Handbook of Chemistry and Physics
  • Более строгое описание теплопроводности можно найти в учебнике по физике, например в «Общей физике» Д.В.Сивухина (Том 2). В 4 томе есть глава, посвящённая тепловому излучению (в т.ч. закону Стефана-Больцмана)

Теплопроводность - легированная сталь

Cтраница 1

Теплопроводность легированных сталей значительно ниже, чем углеродистых. Поэтому нагрев легированных сталей, во избежание образования трещин и коробления, необходимо осуществлять очень медленно. В некоторых случаях при нагреве до высоких температур производятся температурные остановки для выравнивания температуры по всему объему изделия. Пониженная теплопроводность легированных сталей требует также увеличения времени выдержки.  

Теплопроводность легированных сталей меньше теплопроводности углеродистых сталей, вследствие чего изделия из этих сталей нужно нагревать медленнее.  

Низкая электропроводность и теплопроводность легированных сталей, содержащих никель, хром, марганец, кремний и другие элементы, объясняется образованием этими элементами твердых растворов с железом.  

Помимо химического состава, на теплопроводность легированных сталей сильно влияет ее состояние.  

Теплопроводность титана составляет - 14 0 Вт / м град, что несколько ниже теплопроводности легированной стали. Материал хорошо куется, штампуется, обрабатывается резанием. Сварка изделий из титана производится вольфрамовым электродом в защитной атмосфере аргона. В последнее время титан используется для изготовления широкого ассортимента труб, листа, проката.  

Теплопроводность титана составляет - 14 0 Вт / (м - К), что несколько ниже теплопроводности легированной стали. Материал хорошо куется, штампуется, обрабатывается резанием. Сварка изделий из титана производится вольфрамовым электродом в защитной атмосфере аргона. В последнее время титан используется для изготовления широкого ассортимента труб, листа, проката.  

Потерю тепла можно определить на основе законов теплопроводности, считая высоту конуса и среднюю площадь поперечного сечения в форме кольца соответственно как длину и площадь, через которые проводится тепло. Теплопроводность легированных сталей изменяется с изменением температуры.  

Легирующие элементы значительно понижают теплопроводность-стали. Теплопроводность легированной стали может быть в несколько раз ниже теплопроводности простой углеродистой, поэтому легированную сталь следует нагревать для термической обработки более медленно и равномерно, чем углеродистую. В противном случае возможно коробление изделий или появление трещин.  

Теплопроводность низколегированных сталей находится на уровне 33 - 35 вт / (м-град) при комнатной температуре и с повышением температуры падает. Если теплопроводность легированных сталей при комнатной температуре равна 23 - 36 вт / (м-град), то с повышением температуры она изменяется мало. Если теплопроводность меньше 23 вт / (м град), то с увеличением температуры Я, увеличивается. Таким образом, при высоких температурах (800 - 1200 С) коэффициент теплопроводности сталей различных марок практически выравнивается.  

Различие в термической обработке легированной и углеродистой сталей заключается в выборе температуры и скорости нагрева, времени выдержки при этих температурах и в способе охлаждения. Это объясняется тем, что теплопроводность легированной стали значительно меньше углеродистой из-за наличия в первой легирующих элементов.  

При наличии разного рода примесей (сплавы) коэффициент теплопроводности металлов резко убывает. Например, увеличение содержания углерода в стали приводит к уменьшению коэффициента теплопроводности. Коэффициент теплопроводности легированных сталей за счет присадок еще более низок. При температуре 100 С коэффициент теплопроводности армко-железа (99 9 % Fe) равен 60, что примерно в 5 раз превышает К высоколегированной аустенитной стали. При этом рост температуры приводит к увеличению коэффициента теплопроводности высоколегированных сталей. Наоборот, коэффициент теплопроводности углеродистых и низколегированных сталей уменьшается при увеличении температуры.  

Термообработка легированных сталей имеет свои технологические особенности. Они заключаются в различии температур нагрева и скорости охлаждения, выдерж-ки при заданных температурах, в способах охлаждения. Это объясняется тем, что теплопроводность легированных сталей меньше, поэтому нагревать их следует осторожно, особенно при наличии в них вольфрама. Критические точки легированных сталей тоже неодинаковы и - резко отличаются от углеродистых.  

Страницы:      1    2

www.ngpedia.ru

Плотность железа, удельная теплоемкость, теплопроводность: таблица свойств

В таблице приведена плотность железа d, а также значения его удельной теплоемкости Cp, температуропроводности a, коэффициента теплопроводности λ, удельного электрического сопротивления ρ, функции Лоренца L/L0 при различных температурах - в диапазоне от 100 до 2000 К.

Свойства железа существенно зависят от температуры: при нагревании этого металла его плотность, теплопроводность и температуропроводность уменьшаются, а значение удельной теплоемкости железа растет.

Плотность железа равна 7870 кг/м3 при комнатной температуре. При нагревании железа его плотность снижается. Поскольку железо является основным элементом в составе стали, то плотность железа определяет и значение плотности стали. Зависимость плотности железа от температуры слабая - при его нагревании плотность металла снижается и принимает минимальное значение 7040 кг/м3 при температуре плавления, равной 1810 К или 1537°С.

Удельная теплоемкость железа, по данным таблицы, имеет значение 450 Дж/(кг·град) при температуре 27°С. В зависимости от структуры удельная теплоемкость твердого железа при увеличении температуры изменяется по-разному. По значениям в таблице видны характерный максимум теплоемкости железа вблизи Tc и скачки при структурных переходах и при плавлении.

В расплавленном состоянии свойства железа претерпевают изменения. Так, плотность жидкого железа уменьшается и становиться равной 7040 кг/м3. Удельная теплоемкость железа в расплавленном состоянии имеет величину 835 Дж/(кг·град), а теплопроводность железа снижается до значения 39 Вт/(м·град). При этом удельное электрическое сопротивление этого металла увеличивается и при 2000 К принимает значение 138·10-8 Ом·м.

Теплопроводность железа при комнатной температуре равна 80 Вт/(м·град). С ростом температуры теплопроводность железа снижается - она имеет отрицательный температурный коэффициент в области температуры 100-1042 К, а затем начинает слабо расти. Минимальное значение теплопроводности железа составляет 25,4 Вт/(м·град) вблизи точки Кюри. При β-γ переходе наблюдается слабое изменение теплопроводности, которое также имеет место и при γ-δ переходе.

Теплопроводность железа резко падает по мере увеличения количества примесей, особенно кремния и серы. Наивысшей теплопроводностью обладает очень чистое электролитическое железо - его теплопроводность при 27°С равна 95 Вт/(м·град).

Зависимость коэффициента теплопроводности железа от температуры также определяется степенью чистоты этого металла. Чем железо чище, тем выше его теплопроводность и тем больше по абсолютной величине она снижается с повышением температуры.

Источники:

  1. В.Е. Зиновьев. Теплофизические свойства металлов при высоких температурах.
  2. Чиркин В. С. Теплофизические свойства материалов ядерной техники. М.: Атомиздат, 1967.

thermalinfo.ru

Теплопроводность - сталь - Большая Энциклопедия Нефти и Газа, статья, страница 1

Теплопроводность - сталь

Cтраница 1

Теплопроводность стали при увеличении в ней содержания хрома уменьшается.  

Теплопроводность стали РФ1 примерно в 2 раза ниже теплопровод-ностиуглеродистой стали с тем же содержанием углерода.  

Теплопроводность стали понижают примеси, особенно хром и никель.  

Теплопроводность стали в зависимости от ее состава может быть также определена по формулам Р. Е. Кржижановского, составленным на основе предположения, что в равновесном структурном состоянии теплопроводность стали является функцией содержания в ней легирующих элементов и температуры.  

Теплопроводность сталей и чугунов, помимо химического состава, существенно зависит от условий термической обработки, что объясняется различной теплопроводностью присутствующих структур.  

Теплопроводность стали: зависит от содержания углерода и легирующих элементов, чем их больше в стали, тем меньшей теплопроводностью она обладает. Следовательно, изделия из малоуглеродистой или малолегированой стали нагревают быстрее, чем из высокоуглеродистой или высоколегированной.  

Теплопроводность стали зависит от температуры, химического состава и состояния. Легированные стали имеют меньшую теплопроводность, чем углеродистые, а теплопроводность стали в литом состоянии ниже, чем в деформированном. Поэтому легированные стали и стали в литом состоянии (слитки) нагревают обычно медленнее.  

Поскольку теплопроводность стали снижается с увеличением легирования и увеличивается с повышением температуры (фиг.  

От теплопроводности сталей в значительной мере зависит срок службы инструмента, поскольку его поверхностные слои разогреваются до высоких температур. При лучшем отводе тепла сталь лучше сохраняет свою твердость и износостойкость: Срок службы работающих в тяжелых условиях инструментов горячей штамповки возрос в несколько раз после того, как материал инструментов заменили высокотеплопроводной сталью. Теплопроводность имеет большое практическое значение для нагрева и охлаждения крупногабаритных инструментов и блоков инструментов. Внутренняя часть блока инструментов в одних и тех же условиях нагревается и охлаждается тем быстрее, чем выше теплопроводность материала блока.  

Коэффициент теплопроводности стали равен 40, а алюминия 175 - 200 ккал / м - час град.  

Коэффициент теплопроводности стали равен 40, а алюминия 175 - 200 ккал / м час-град.  

Коэффициент теплопроводности стали Кс 39 ккал / м2 час С, чугуна г 54 ккал / м час С, воздуха Яв 0 02 ккал / м час С.  

www.ngpedia.ru

17. Теплоемкость и теплопроводность металлов и сплавов

Теплоемкость – это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость – количество энергии, поглощаемой единицей массы при нагреве на один градус. От величины теплопроводности зависит возможность появления трещин в металле. Если теплопроводность низкая, то риск возникновения трещин увеличивается. Так, легированные стали имеют теплопроводность, которая в пять раз меньше, чем теплопроводность меди и алюминия. Размер теплоемкости влияет на уровень расходуемого топлива на нагрев заготовки до определенной температуры.

У металлических сплавов удельная теплоемкость находится в пределах 100-2000 Дж/(кг*К). У большинства металлов теплоемкость составляет 300–400 Дж/(кг*К). Теплоемкость металлических материалов растет с повышением температуры. Полимерные материалы, как правило, имеют удельную теплоемкость 1000 Дж/(кг?К) и более.

Электрические свойства материалов характеризуются наличием носителей зарядов электронов или ионов и свободой их передвижения под действием электрического поля.

Высокие энергии ковалентной и ионной связи сообщают материалам с этими типами связи свойства диэлектрика. Их слабая электрическая проводимость обусловлена влиянием примесей, причем под влиянием влаги, образующей с примесями проводящие растворы, электропроводность таких материалов возрастает.

Материалы с разными типами связи имеют различные температурные коэффициенты электросопротивления: у металлов он положителен, у материалов с ковалентным и ионным типом связи – отрицателен. При нагреве металлов концентрация носителей зарядов – электронов не увеличивается, а сопротивление их движению возрастает из-за увеличения амплитуд колебаний атомов. В материалах с ковалентной или ионной связью при нагреве концентрация носителей зарядов повышается настолько, что нейтрализуется влияние помех от увеличения колебаний атомов.

Теплопроводностью называется перенос тепловой энергии в твердых телах, жидкостях и газах при макроскопической неподвижности частиц. Перенос теплоты происходит от более горячих частиц к холодным и подчиняется закону Фурье.

Теплопроводность зависит от типа межатомной связи, температуры, химического состава и структуры материала. Теплота в твердых телах переносится электронами и фононами.

Механизм передачи теплоты, в первую очередь, определяется типом связи: в металлах теплоту переносят электроны; в материалах с ковалентным или ионным типом связи – фононы. Самым теплопроводным является алмаз. В полупроводниках при весьма незначительной концентрации носителей заряда теплопроводность17б осуществляется в основном фононами. Чем совершеннее кристаллы, тем выше их теплопроводность. Монокристаллы лучше проводят теплоту, чем поликристаллы, так как границы зерен и другие дефекты кристаллической структуры рассеивают фононы и увеличивают электросопротивление. Кристаллическая решетка создает периодическое энергетическое пространство, в котором передача теплоты электронами или фононами облегчена по сравнению с аморфным состоянием.

Чем больше примесей содержит металл, мельче зерна и больше искажена кристаллическая решетка, тем меньше теплопроводность. Чем больше размеры зерен, тем выше теплопроводность. Легирование вносит искажение в кристаллические решетки твердых растворов и понижает теплопроводность по сравнению с чистым металлом – основой сплава. Структурные составляющие, представляющие дисперсные смеси нескольких фаз (эвтектики, эвтектоиды), снижают теплопроводность. Структуры с равномерным распределением частиц фаз имеют меньшую теплопроводность, чем основа сплава. Предельным видом подобной структуры является пористый материал. По сравнению с твердыми телами газы являются теплоизоляторами.

Графит имеет высокую теплопроводность. При передаче теплоты параллельно слоям атомов углерода базисной плоскости теплопроводность графита превышает теплопроводность меди более чем в 2 раза

Разветвленные пластины графита в сером чугуне имеют структуру монокристалла, и поэтому он имеет высокую теплопроводность. Высокопрочный чугун с шаровидным графитом при той же объемной доле графита имеет теплопроводность 25…40 Вт/м*К, что почти вдвое меньше по сравнению с серым чугуном.

При нагреве теплопроводности сталей разных классов сближаются. Стекло имеет низкую теплопроводность. Полимерные материалы плохо проводят теплоту, теплопроводность большинства термопластов не превышает 1,5 Вт/(мОК).

Теплопроводность может меняться также, как и электропроводность в случае, если электронная теплопроводность металла составляет l e. Тогда любые изменения, происходящие в химическом и фазовом составе и структуре сплава влияют на теплопроводность также, как и на электропроводность (по правилу Видемана-Франца).

При отдалении состава сплава от чистых компонентов происходит понижение теплопроводности. Исключение составляют, например, медно-никелевые сплавы, в которых происходят обратные явления.

Следующая глава >

tech.wikireading.ru

Коэффициент теплопроводности | Мир сварки

Теплопроводность - это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Коэффициент теплопроводности материалов

Материал Температура, °С Коэффициент теплопроводности кал/(см·с·град) Вт/(м·K)
Металлы
Алюминий 20 0,538 225
Бериллий 20 0,45 188
Ванадий 20 0,074 31,0
Вольфрам 20 0,31 130
Гафний 20 0,053 22,2
Железо 20 0,177 77
Золото 20 0,744 311
Латунь 20 0,205–0,263 86–110
Магний 20 0,376 155
Медь 20 0,923 391
Молибден 20 0,340 145
Никель 20 0,220 92,5
Ниобий 20 0,125 52,5
Палладий 20 0,170 71,3
Платина 20 0,174 72,8
Ртуть 20 0,069 29,1
Свинец 20 0,083 34,7
Серебро 20 1,01 423
Сталь 20 0,048–0,124 20–52
Тантал 20 0,130 54,5
Титан 20 0,036 15,1
Хром 20 0,16 67,1
Цинк 20 0,265 110
Цирконий 20 0,050 21
Чугун 20 0,134 56
Пластмассы
Бакелит 20 0,0006 0,23
Винипласт 20 0,0003 0,126
Гетинакс 20 0,0006 0,24
Мипора 20 0,0002 0,085
Поливинилхлорид 20 0,0005 0,19
Пенопласт ПС-1 20 0,0001 0,037
Пенопласт ПС-4 20 0,0001 0,04
Пенопласт ПХВ-1 20 0,0001 0,05
Пенопласт резопен ФРП 20 0,0001 0,045
Пенополистирол ПС-Б 20 0,0001 0,04
Пенополистирол ПС-БС 20 0,0001 0,04
Пенополиуретановые листы 20 0,0001 0,035
Пенополиуретановые панели 20 0,0001 0,025
Пеностекло легкое 20 0,0001 0,06
Пеностекло тяжелое 20 0,0002 0,08
Пенофенолпласт 20 0,0001 0,05
Полистирол 20 0,0002 0,082
Полихлорвинил 20 0,0011 0,44
Стеклотекстолит 20 0,0007 0,3
Текстолит 20 0,0005–0,0008 0,23–0,34
Фторопласт-3 20 0,0001 0,058
Фторопласт-4 20 0,0006 0,25
Эбонит 20 0,0004 0,16
Эбонит вспученный 20 0,0001 0,03
Резины
Каучук вспененный 20 0,0001 0,03
Каучук натуральный 20 0,0001 0,042
Каучук фторированный 20 0,0001 0,055
Резина 20 0,0003–0,0005 0,12–0,20
Жидкости
Анилин 0 0,0005 0,19
50 0,0004 0,17
100 0,0004 0,167
Ацетон 0 0,0004 0,17
50 0,0004 0,16
100 0,0004 0,15
Бензол 50 0,0003 0,138
100 0,0003 0,126
Вода 0 0,0013 0,551
20 0,0014 0,600
50 0,0016 0,648
100 0,0016 0,683
Глицерин 50 0,0007 0,283
100 0,0007 0,288
Гудрон 20 0,0007 0,3
Лак бакелитовый 20 0,0007 0,29
Масло вазелиновое 0 0,0003 0,126
50 0,0003 0,122
100 0,0003 0,119
Масло касторовое 0 0,0004 0,184
50 0,0004 0,177
100 0,0004 0,172
Спирт метиловый 0 0,0005 0,214
50 0,0005 0,207
Спирт этиловый 0 0,0004 0,188
50 0,0004 0,177
Толуол 0 0,0003 0,142
50 0,0003 0,129
100 0,0003 0,119
Газы
Азот 15 0,00006 0,0251
Аргон 20 0,00004 0,0177
41 0,00004 0,0187
Вакуум (абсолютный) 20 0 0
Водород 15 0,00042 0,1754
Воздух 20 0,00006 0,0257
Гелий 43 0,00037 0,1558
Кислород 20 0,00006 0,0262
Ксенон 20 0,00001 0,0057
Метан 0 0,00007 0,0307
Углекислый газ 20 0,00004 0,0162
Дерево
Древесина - доски 20 0,0004 0,15
Древесина - фанера 20 0,0004 0,15
Древесина твердых пород 20 0,0005 0,2
Древесно-стружечная плита ДСП 20 0,0005 0,2
Дуб вдоль волокон 20 0,0008–0,001 0,35–0,43
Дуб поперек волокон 20 0,0004–0,0005 0,2–0,21
Липа, береза, клен, дуб (15% влажности) 20 0,0004 0,15
Опилки - засыпка 20 0,0002 0,095
Опилки древесные сухие 20 0,0002 0,065
Сосна вдоль волокон 20 0,0009 0,38
Сосна поперек волокон 20 0,0004 0,15
Сосна обыкновенная, ель, пихта (450...550 кг/куб.м, 15 % влажности) 20 0,0004 0,15
Сосна смолистая (600...750 кг/куб.м, 15 % влажности) 20 0,0006 0,23
Минералы
Алмаз 20 2,15-5,50 900-2300
Кварц 20 0,019 8
Горные породы
Глинозем 20 0,006 2,33
Гравий 20 0,0009 0,36
Гранит, базальт 20 0,008 3,5
Грунт 10 % воды 20 0,004 1,75
Грунт 20 % воды 20 0,005 2,1
Грунт песчаный 20 0,003 1,16
Грунт сухой 20 0,0009 0,4
Грунт утрамбованный 20 0,003 1,05
Известняк 20 0,004 1,7
Камень 20 0,003 1,4
Песок 0 % влажности 20 0,0008 0,33
Песок 10 % влажности 20 0,002 0,97
Песок 20 % влажности 20 0,003 1,33
Песчаник обожженный 20 0,004 1,5
Сланец 20 0,005 2,1
Различные материалы
Алебастровые плиты 20 0,001 0,47
Асбест (шифер) 20 0,0008 0,35
Асбест волокнистый 20 0,0003 0,15
Асбестоцемент 20 0,004 1,76
Асбоцементные плиты 20 0,0008 0,35
Асфальт 20 0,002 0,72
Асфальт в полах 20 0,002 0,8
Бетон на каменном щебне 20 0,003 1,3
Бетон на песке 20 0,002 0,7
Бетон пористый 20 0,003 1,4
Бетон с каменным щебнем 20 0,003 1,28
Бетон сплошной 20 0,004 1,75
Бетон термоизоляционный 20 0,0004 0,18
Битум 20 0,001 0,47
Бумага 20 0,0003 0,14
Бумага промасленная 20 0,0004 0,15
Бумага сухая 20 0,0002 0,1
Вата минеральная легкая 20 0,0001 0,045
Вата минеральная тяжелая 20 0,0001 0,055
Вата хлопковая 20 0,0001 0,055
Вермикулитовые листы 20 0,0002 0,1
Войлок асбестовый 20 0,0001 0,052
Войлок шерстяной 20 0,0001 0,045
Гипс строительный 20 0,0008 0,35
Гравий (наполнитель) 20 0,002 0,93
Железобетон 20 0,004 1,7
Зола древесная 20 0,0004 0,15
Известь-песок раствор 20 0,002 0,87
Иней 20 0,001 0,47
Ипорка (вспененная смола) 20 0,0001 0,038
Камышит (плиты) 20 0,0003 0,105
Картон 20 0,0003–0,0008 0,14–0,35
Картон строительный многослойный 20 0,0003 0,13
Картон теплоизолированный БТК-1 20 0,0001 0,04
Керамзитобетон 20 0,0005 0,2
Кирпич кремнеземный 20 0,0004 0,15
Кирпич пустотелый 20 0,001 0,44
Кирпич силикатный 20 0,002 0,81
Кирпич сплошной 20 0,002 0,67
Кирпич сплошной 20 0,002 0,67
Кирпич шлаковый 20 0,001 0,58
Кожа 20 0,0003 0,15
Лакоткань 20 0,0006 0,25
Лед 0 0,005 2,21
-20 0,006 2,44
-60 0,007 2,91
Обмотка непропитанная 20 0,0005–0,0010 0,2–0,4
Обмотка пропитанная 20 0,0003–0,0005 0,1–0,2
Пенобетон 20 0,0007 0,3
Пергамин 20 0,0002 0,08
Перлит 20 0,0001 0,05
Перлито-цементные плиты 20 0,0002 0,08
Плитка облицовочная 20 0,251 105
Плитка термоизоляционная ПМТБ-2 20 0,0001 0,036
Поролон 20 0,0001 0,04
Портландцемент раствор 20 0,001 0,47
Пробковая плита 20 0,0001 0,043
Пробковые листы легкие 20 0,0001 0,035
Пробковые листы тяжелые 20 0,0001 0,05
Рубероид 20 0,0004 0,17
Снег начавший таять 20 0,0015 0,64
Снег свежевыпавший 20 0,0003 0,105
Снег уплотненный 20 0,0008 0,35
Стекло 20 0,003 1,15
Стекловата 20 0,0001 0,05
Стекловолокно 20 0,0001 0,036
Толь бумажный 20 0,0006 0,23
Торфоплита 20 0,0001 0,065
Цементные плиты 20 0,005 1,92
Цемент-песок раствор 20 0,003 1,2
Шерсть 20 0,0001 0,05
Шлак гранулированный 20 0,0004 0,15
Шлак котельный 20 0,0007 0,29
Шлакобетон 20 0,0014 0,6
Штукатурка сухая 20 0,0005 0,21
Штукатурка цементная 20 0,002 0,9
Электрокартон 20 0,0004 0,17

weldworld.ru

Теплопроводность - сталь - Большая Энциклопедия Нефти и Газа, статья, страница 2

Теплопроводность - сталь

Cтраница 2

Как изменяется теплопроводность стали при нагреве.  

Кс - теплопроводность стали; бс - расстояние от поверхности до спая термопары; е - ширина нарезки гребня шнека; Тц - температура цилиндра в месте установки термопары; Т ц - температура на поверхности раздела цилиндра и слоя гранул, является определяющей величиной для расчета коэффициента трения.  

При измерении теплопроводности сталей при температурах 400 - 500 С составной образец окружается электрической печкой 11; при температурах - 400 - 500 С используется водяная рубашка.  

Для определения теплопроводности стали был использован регулярный режим третьего рода (метод температурных волн Ангстрема) для полуограниченного стержня.  

Легирующие элементы понижают теплопроводность стали, и поэтому для легированных сталей нужен медленный и равномерный нагрев. Охлаждение их также не должно быть резким во избежание появления внутренних напряжений, трещин и коробления. Сдвиг вправо кривых начала и конца изотермического распада аустенита обеспечивает глубокую прокаливаемость легированных сталей, особенно сталей, легированных марганцем, кремнием, хромом, никелем, вольфрамом и др. В связи с этим появляется возможность применения изотермической и ступенчатой закалки для деталей крупного сечения, изготовляемых из легированных сталей.  

Легирующие элементы понижают теплопроводность стали тем больше, чем сложнее сталь по своему составу. По существующим данным трудно установить какую-либо закономерную связь между теплопроводностью легирующего элемента и степенью влияния этого элемента на теплопроводность стали, в которую он входит; можно лишь сказать, что меньшее влияние оказывает кобальт, наибольшее - хром, никель, вольфрам.  

Легирующие элементы понижают теплопроводность стали и поэтому для легированных сталей нужен медленный и равномерный нагрев. Охлаждение их также не должно быть резким, чтобы не появлялись внутренние напряжения, трещины и не происходило коробление. Введением легирующих элементов достигают глубокой прокаливаемое сталей; особенно сталей, легированных марганцем, хромом, молибденом, никелем, кремнием и др. Появляется возможность изотермической и ступенчатой закалки деталей большого сечения, изготовляемых из легированных сталей.  

Присутствие хрома снижает теплопроводность стали, ухудшает ее свариваемость.  

Большое значение имеет теплопроводность стали. Стали с аустенитной структурой обладают малой теплопроводностью. Выделяющееся при резании тепло мало поглощается изделием, а в основном концентрируется и точках резания и разогревает режущую кромку инструмента, что снижает его стойкость. Поэтому, несмотря на низкую твердость, аустенитные стали обрабатываются плохо.  

Большое значение имеет теплопроводность стали. Стали с аустенитной структурой обладают малой теплопроводностью. Выделяющееся при резании тепло мало поглощается изделием, а в основном концентрируется в точках резания и разогревает режущую кромку инструмента, что снижает его стойкость. Поэтому, несмотря на низкую твердость, аустенитные стали обрабатываются плохо.  

С повышением температуры теплопроводность сталей уменьшается; однако чем больше легирующих растворено в твердом растворе, тем это снижение менее значительно.  

В обоих случаях теплопроводность стали труб принята А.  

Страницы:      1    2    3    4

www.ngpedia.ru

Теплопроводность - сталь - Большая Энциклопедия Нефти и Газа, статья, страница 3

Теплопроводность - сталь

Cтраница 3

С увеличением содержания углерода теплопроводность стали уменьшается. Меньшей теплопроводностью обладают легированные стали.  

Следует учитывать, что теплопроводность стали почти в десять раз ниже, чем у меди, поэтому стальная вставка должна быть возможно тоньше.  

С переходом в аустенит теплопроводность стали вновь начинает расти.  

Легирующие элементы значительно понижают теплопроводность стали. Теплопроводность легированной стали может быть в несколько раз ниже теп лопроводпости простой углеродистой, поэтому легированную сталь следует нагревать при термической обработке более медленно и равномерно, чем углеродистую. В противном случае возможно коробление изделий или появление трещин.  

Здесь предполагается, что теплопроводность стали в направлениях х ж у одинакова. Зависимость температуры от и изложницы показана на фиг.  

Некоторые легирующие элементы уменьшают теплопроводность стали, поэтому при нагреве и охлаждении в легированных сталях образуются большие внутренние напряжения. Скорость нагрева этих сталей должна быть меньше, чем углеродистой стали. Некоторые легирующие элементы уменьшают скорость диффузии, поэтому при термической обработке легированных сталей требуется давать длительные выдержки, достаточные для полного протекания диффузионных процессов, необходимых для выравнивания химического состава.  

Теплопроводность графитопласта АТМ-1 близка к теплопроводности стали, марки Ст.  

Следует отметить, что коэффициент теплопроводности стали очень высок, поэтому температура внутренней поверхности трубы незначительно отличается от температуры наружной ее поверхности.  

Перед проведением опытов по определению теплопроводности стали 1Х18Н9Т установка была проверена путем определения X меди. Это значение определяет и ошибку при измерении лучистых потоков.  

Следует отметить, что благодаря невысокой теплопроводности сталей (особенно аустенитных) заметное понижение температуры наблюдается только у основания лопатки, далее к периферии температура лопатки растет, быстро достигая температуры торможения обтекающего газа.  

Страницы:      1    2    3    4

Cтраница 3


Теплопроводность эмалевого покрытия даже обычной эмалью достаточно низка, - 0 8 - 1 0 Ватт на метр градус. Для сравнения: теплопроводность железа - 65; стали - 70 - 80; меди - 330 Ватт на метр градус. При наличии пузырьков газа в эмали, что приводит к снижению кажущейся плотности ее, теплопроводность снижается. Например, при кажущейся плотности эмали 2 48 грамм на сантиметр кубический теплопроводность равна 1 18 Ватт на метр градус, то при кажущейся плотности 2 20 грамм на сантиметр кубический теплопроводность равна уже 0 46 Ватт на метр градус.  

Кристаллическая решетка алюминия состоит, как и у многих других металлов, из гра-нецентрированных кубов (см. стр. Теплопроводность алюминия вдвое больше теплопроводности железа и равна половине теплопроводности меди. Его электропроводность намного выше электропроводности железа и достигает 60 % электропроводности меди.  

Состав, и механические свойства некоторых хромистых чугунов.  

Сплав весьма склонен к образованию усадочных раковин. Теплопроводность сплава составляет около половины теплопроводности железа, что следует принимать во внимание при изготовлении тепловой аппаратуры из хромистого чугуна.  

При дуговой сварке меди следует учесть, что теплопроводность меди примерно в шесть раз больше теплопроводности железа. С прочность меди настолько снижается, что уже при легких ударах образуются трещины. Плавится медь при температуре 1083 С.  

Модуль упругости титана почти вдвое меньше модуля упругости железа, находится на одном уровне с модулем медных сплавов и значительно выше, чем у алюминия. Теплопроводность титана низкая: она составляет около 7 % от теплопроводности алюминия и 16 5 % от теплопроводности железа. Это необходима учитывать при нагреве металла для обработки давлением и при сварке. Электросопротивление титана примерно в 6 раз больше чем у железа и в 20 раз больше, чем у алюминия.  

Модуль упругости титана почти вдвое меньше модуля упругости железа, находится на одном уровне с модулем медных сплавов и значительно выше, чем у алюминия. Теплопроводность, титана низкая: она составляет около 7 % от теплопроводности алюминия и 16 5 % от теплопроводности железа.  

Этот материал обладает удовлетворительной механической прочностью и исключительно высокой химической стойкостью почти ко всем, даже наиболее агрессивным химическим реагентам, за исключением сильных окислителей. Кроме того, он отличается от всех прочих неметаллических материалов высокой теплопроводностью, более чем в два раза превышающей теплопроводность железа.  

Всем этим требованиям удовлетворяют железо, углеродистые и низколегированные конструкционные стали при невысоком содержании углерода: температура плавления железа 1535 С, горения 1200 С, температура плавления оксида железа - 1370 С. Тепловой эффект реакций окисления достаточно высок: Fe 0 5О2 FeO 64 3 ккал / г-моль, 3Fe 2О2 Fe3O4 Н - 266 9 ккал / г-моль, 2Fe 1 5О2 Fe2O3 198 5 ккал / г-моль, а теплопроводность железа является ограниченной.  

Титан и его сплавы благодаря высоким физико-химическим свойствам все больше применяют в качестве конструкционного материала для авиационной и ракетной техники, химического машиностроения, приборостроения, судо - и машиностроения, в пищевой и других отраслях промышленности. Титан почти в два раза легче стали, его плотность 4 5 г / см3, он обладает высокими механическими свойствами, коррозионной стойкостью при нормальных и высоких температурах и во многих активных средах, теплопроводность титана почти в четыре раза меньше теплопроводности железа.  

Одно из таких решений заключается в том, что навитую на охлаждаемую поверхность трубу сваркой лишь прихватывают к этой поверхности, после чего стык трубы с кожухом покрывают эпоксидной смолой, смешанной с железным порошком. Теплопроводность смеси близка к теплопроводности железа. В результате создается хороший тепловой контакт между кожухом и трубой, улучшающий условия охлаждения кожуха.  

Всем этим условиям удовлетворяют железо и углеродистые стали. Окислы FeO и Fe304 плавятся при температурах 1350 и 1400 С. Теплопроводность железа по сравнению с другими конструкционными материалами не велика.  

Для металлов, работающих при низких температурах, очень важно и то, как изменяется их теплопроводность при изменении температуры. Теплопроводность стали с понижением температуры повышается. Чистое железо очень чувствительно к Изменению температуры. В зависимости от количества примесей теплопроводность железа может резко меняться. Чистое железо (99 7 %), содержащее 0 01 % С и 0 21 % О2, имеет теплопроводность 0 35 кал см-1 с - 19С - при - 173 С и 0 85 кал см - х Хс - 10С - при-243 С.  

Наиболее широко применяется пайка паяльником, газовыми горелками, погружением в расплавленный припой и в печах. Ограничения в ее применении вызваны лишь тем, что паяльником можно осуществлять пайку только тонкостенных деталей при температуре 350 С. Массивные детали вследствие большой теплопроводности, превышающей в 6 раз теплопроводность железа, паяют газовыми горелками. Для трубчатых медных теплообменников применяется пайка погружением в расплавы солей и припоев. При пайке погружением в расплавы солей используют, как правило, соляные печи-ванны. Соли обычно служат источником тепла и оказывают флюсующее действие, поэтому дополнительного флюсования при пайке не требуется. При пайке погружением в ванну с припоем предварительно офлюсованные детали нагревают в расплаве припоя, который при температуре пайки заполняет соединительные зазоры. Зеркало припоя защищают активированным углем или инертным газом. Недостатком пайки в соляных ваннах является невозможность в ряде случаев удаления остатков солей или флюса.