Соответствии с формулами френеля зависит. Формулы френеля

Фо́рмулы Френе́ля определяют амплитуды и интенсивности преломлённой и отражённой электромагнитной волны при прохождении через плоскую границу раздела двух сред с разными показателями преломления . Названы в честь Огюста Френеля , французского физика, который их вывел. Отражение света, описываемое формулами Френеля, называется френелевским отражением .

Формулы Френеля справедливы в том случае, когда граница раздела двух сред гладкая, среды изотропны, угол отражения равняется углу падения, а угол преломления определяется законом Снеллиуса . В случае неровной поверхности, особенно когда характерные размеры неровностей одного порядка с длиной волны , большое значение имеет диффузное отражение света на поверхности.

При падении на плоскую границу различают две поляризации света. s -Поляризация - это поляризация света, для которой напряжённость электрического поля электромагнитной волны перпендикулярна плоскости падения (т.е. плоскости, в которой лежат и падающий, и отражённый луч). p

Формулы Френеля для s -поляризации и p -поляризации различаются. Поскольку свет с разными поляризациями по-разному отражается от поверхности, то отражённый свет всегда частично поляризован, даже если падающий свет неполяризован. Угол падения, при котором отражённый луч полностью поляризован, называется углом Брюстера ; он зависит от отношения показателей преломления сред, образующих границу раздела.

s -Поляризация

Углы падения и преломления для μ = 1 {\displaystyle \mu =1} связаны между собой законом Снеллиуса

sin ⁡ α sin ⁡ β = n 2 n 1 . {\displaystyle {\frac {\sin \alpha }{\sin \beta }}={\frac {n_{2}}{n_{1}}}.}

Отношение n 21 = n 2 n 1 {\displaystyle n_{21}={\cfrac {n_{2}}{n_{1}}}} называется относительным показателем преломления двух сред.

R s = | Q | 2 | P | 2 = sin 2 ⁡ (α − β) sin 2 ⁡ (α + β) . {\displaystyle R_{s}={\frac {|Q|^{2}}{|P|^{2}}}={\frac {\sin ^{2}(\alpha -\beta)}{\sin ^{2}(\alpha +\beta)}}.} T s = 1 − R s . {\displaystyle T_{s}=1-R_{s}.}

Обратите внимание, коэффициент пропускания не равен | S | 2 | P | 2 {\displaystyle {\frac {|S|^{2}}{|P|^{2}}}} , так как волны одинаковой амплитуды в разных средах несут разную энергию.

p -Поляризация

p -Поляризация - поляризация света, для которой вектор напряжённости электрического поля лежит в плоскости падения.

{ S = 2 μ 1 ε 1 μ 2 ε 2 ⋅ sin ⁡ 2 α μ 1 μ 2 sin ⁡ 2 α + sin ⁡ 2 β P ⇔ 2 cos ⁡ α sin ⁡ β sin ⁡ (α + β) cos ⁡ (α − β) P , Q = μ 1 μ 2 sin ⁡ 2 α − sin ⁡ 2 β μ 1 μ 2 sin ⁡ 2 α + sin ⁡ 2 β P ⇔ t g (α − β) t g (α + β) P , {\displaystyle \left\{{\begin{matrix}S=2{\sqrt {\cfrac {\mu _{1}\varepsilon _{1}}{\mu _{2}\varepsilon _{2}}}}\cdot {\cfrac {\sin 2\alpha }{{\cfrac {\mu _{1}}{\mu _{2}}}\sin 2\alpha +\sin 2\beta }}P\;\Leftrightarrow \;{\cfrac {2\cos \alpha \sin \beta }{\sin(\alpha +\beta)\cos(\alpha -\beta)}}P,\\\;\\Q={\cfrac {{\cfrac {\mu _{1}}{\mu _{2}}}\sin 2\alpha -\sin 2\beta }{{\cfrac {\mu _{1}}{\mu _{2}}}\sin 2\alpha +\sin 2\beta }}P\;\Leftrightarrow \;{\cfrac {\mathrm {tg\,} (\alpha -\beta)}{\mathrm {tg\,} (\alpha +\beta)}}P,\end{matrix}}\right.}

Обозначения сохраняются с предыдущего раздела; выражения после стрелок вновь соответствуют случаю μ 1 = μ 2 {\displaystyle \mu _{1}=\mu _{2}}

1.1. Граничные условия. Формулы Френеля

Классической задачей, для решения которой оказывается важной ориентация вектора Е , является прохождение световой волны через границу раздела двух сред. В силу геометрии задачи возникает разница в отражении и преломлении двух независимых компонент, поляризованных параллельно и перпендикулярно плоскости падения, и, следовательно, исходно неполяризованный свет после отражения или преломления становится частично поляризованным.

Граничные условия для векторов напряженности и индукции, известные из электростатики, уравнивают на границе раздела тангенциальные компоненты векторов Е и H и нормальные компоненты векторов D и B , по сути, выражая отсутствие токов и зарядов вдоль границы и ослабление внешнего электрического поля в e раз при попадании в диэлектрик:



При этом поле в первой среде складывается из полей падающей и отраженной волн, а во второй среде – равно полю преломленной волны (см. рис. 2.1).

Поле в любой из волн может быть записано в виде соотношений типа . Т. к. граничные условия (5.1) должны выполняться в любой точке границы раздела и в любой момент времени, из них можно получить законы отражения и преломления:

1. Частоты всех трех волн одинаковы: w 0 = w 1 = w 2 .

2. Волновые вектора всех волн лежат в одной плоскости:.

3. Угол падения равен углу отражения: a = a".

4. Закон Снеллиуса: . Можно показать, что произведение n ×sin a остается постоянным при любом законе изменения показателя преломления вдоль оси Z, не только ступенчатом на границах раздела, но и непрерывном.

На эти законы поляризация волн не влияет.

C другой стороны непрерывность соответствующих компонент векторов Е и H приводит к так называемым формулам Френеля, позволяющим рассчитать относительные амплитуды и интенсивности отраженной и прошедшей волн для обеих поляризаций. Выражения оказываются существенно различными для параллельной (вектор E лежит в плоскости падения) и перпендикулярной поляризации, естественно, совпадая для случая нормального падения (a = b = 0).



Геометрия полей для параллельной поляризации показана на рис. 5.2а, для перпендикулярной – на рис. 5.2б. Как было отмечено в разделе 4.1, в электромагнитной волне вектора E , H и k образуют правую ортогональную тройку. Поэтому если тангенциальные компоненты векторов E 0 и E 1 падающей и отраженной волн направлены одинаково, то соответствующие проекции магнитных векторов имеют разные знаки. С учетом этого, граничные условия приобретают вид:

(5.2)

для параллельной поляризации и

(5.3)

для перпендикулярной поляризации. Кроме того, в каждой из волн напряженности электрического и магнитного полей связаны соотношениями . С учетом этого, из граничных условий (5.2) и (5.3) можно получить выражения для амплитудных коэффициентов отражения и пропускания :

(5.4)

Помимо амплитудных, представляют интерес энергетические коэффициенты отражения R и пропускания T , равные отношению потоков энергии соответствующих волн. Т. к. интенсивность световой волны пропорциональна квадрату напряженности электрического поля, для любой поляризации выполняется равенство .Кроме того, справедливо соотношение R + T = 1, выражающее закон сохранения энергии при отсутствии поглощения на границе раздела. Таким образом,

(5.5)

Совокупность формул (5.4), (5.5) и называется формулами Френеля . Особый интерес представляет предельный случай нормального падения света на границу раздела (a = b = 0). При этом исчезает различие между параллельной и перпендикулярной поляризациями и

(5.6)

Из (5.6) находим, что при нормальном падении света из воздуха (n 1 = 1) на стекло (n 2 = 1.5) отражается 4% энергии светового пучка, а проходит 96%.

1.2. Анализ формул Френеля

Рассмотрим сначала энергетические характеристики. Из (5.5) видно, что при a + b = p/2 коэффициент отражения параллельной компоненты обращается в нуль: R || = 0. Угол падения, при котором возникает этот эффект, называется углом Брюстера . Из закона Снеллиуса легко найти, что

, (5.7)

где n 12 – относительный показатель преломления. В то же время для перпендикулярной компоненты R ^ ¹ 0. Поэтому при падении неполяризованного света под углом Брюстера отраженная волна оказывается линейно поляризованной в плоскости, перпендикулярной плоскости падения, а прошедшая – частично поляризованной с преобладанием параллельной компоненты (рис. 5.3а) и степенью поляризации

.

Для перехода воздух-стекло угол Брюстера близок к 56 о.

На практике получение линейно поляризованного света за счет отражения под углом Брюстера используется редко из-за низкого коэффициента отражения. Однако возможно построение поляризатора, работающего на пропускание, с использованием стопы Столетова (рис. 5.3б). Стопа Столетова состоит из нескольких плоскопараллельных стеклянных пластинок. При прохождении через нее света под углом Брюстера, перпендикулярная компонента практически полностью рассеивается на границах раздела, а прошедший луч оказывается поляризован в плоскости падения. Такие поляризаторы используются в мощных лазерных системах, когда поляризаторы других типов могут быть разрушены лазерным излучением. Другим применением эффекта Брюстера является снижение потерь на отражение в лазерах за счет установки оптических элементов под углом Брюстера к оптической оси резонатора.

Вторым важнейшим следствием формул Френеля является существование полного внутреннего отражения (ПВО) от оптически менее плотной среды при углах падения больших, чем предельный угол, определяемый из соотношения



Подробно эффект полного внутреннего отражения будет рассмотрен в следующем разделе, сейчас отметим только, что из формул (5.7) и (5.8) следует, что угол Брюстера всегда меньше предельного угла.

На графиках рис. 5.4а приведены зависимости коэффициентов отражения при падении света из воздуха на границы со средами с n 2 " = 1.5 (сплошные линии) и n 2 "" = 2.5 (штриховые линии). На рис. 5.4б направление прохождения границы раздела обратное.

Обратимся теперь к анализу амплитудных коэффициентов (5.4). Нетрудно видеть, что при любых соотношениях между показателями преломления и при любых углах коэффициенты пропускания t положительны. Это означает, что преломленная волна всегда софазна падающей.

Коэффициенты отражения r , напротив, могут быть отрицательны. Поскольку всякую отрицательную величину можно записать как , отрицательность соответствующего коэффициента можно интерпретировать как сдвиг фазы на p при отражении. Об этом эффекте часто говорят также как о потере полволны при отражении.

Из (5.4) следует, что при отражении от оптически более плотной среды (n 1 < n 2 , a > b) r ^ < 0 при всех углах падения, а r || < 0 при углах падения меньших угла Брюстера. При отражении от оптически менее плотной среды (n 1 > n 2 , a < b) отражение софазное за исключением случая падения света с параллельной поляризацией под углом большим угла Брюстера (но меньшим предельного угла). Очевидно, что при нормальном падении на оптически более плотную среду фаза отраженной волны всегда сдвинута на p.

Таким образом, естественно поляризованный свет при прохождении границы раздела двух сред превращается в частично поляризованный, а при отражении под углом Брюстера даже в линейно поляризованный. Линейно поляризованный свет при отражении и преломлении остается линейно поляризованным, но ориентация плоскости поляризации может измениться из-за различия коэффициентов отражения двух компонент.

Формулы Френеля

Фо́рмулы Френе́ля определяют амплитуды и интенсивности преломлённой и отражённой электромагнитной волны при прохождении через плоскую границу раздела двух сред с разными показателями преломления . Названы в честь Огюста Френеля , французского физика, который их вывел. Отражение света, описываемое формулами Френеля, называется френелевским отражением .

Формулы Френеля справедливы в том случае, когда граница раздела двух сред гладкая, среды изотропны, угол отражения равняется углу падения, а угол преломления определяется законом Снеллиуса . В случае неровной поверхности, особенно когда характерные размеры неровностей одного порядка с длиной волны , большое значение имеет диффузное рассеяние света на поверхности.

При падении на плоскую границу различают две поляризации света. s p

Формулы Френеля для s -поляризации и p -поляризации различаются. Поскольку свет с разными поляризациями по-разному отражается от поверхности, то отражённый свет всегда частично поляризован, даже если падающий свет неполяризован. Угол падения, при котором отражённый луч полностью поляризован, называется углом Брюстера ; он зависит от отношения показателей преломления сред, образующих границу раздела.

s -Поляризация

s -Поляризация - это поляризация света, для которой напряжённость электрического поля электромагнитной волны перпендикулярна плоскости падения (т.е. плоскости, в которой лежат и падающий, и отражённый луч).

где - угол падения, - угол преломления, - магнитная проницаемость среды, из которой падает волна, - магнитная проницаемость среды, в которую волна проходит, - амплитуда волны, которая падает на границу раздела, - амплитуда отражённой волны, - амплитуда преломлённой волны. В оптическом диапазоне частот с хорошей точностью и выражения упрощаются до указанных после стрелок .

Углы падения и преломления для связаны между собой законом Снеллиуса

Отношение называется относительным показателем преломления двух сред.

Обратите внимание, коэффициент пропускания не равен , так как волны одинаковой амплитуды в разных средах несут разную энергию.

p -Поляризация

p -Поляризация - поляризация света, для которой вектор напряжённости электрического поля лежит в плоскости падения.

где , и - амплитуды волны, которая падает на границу раздела, отражённой волны и преломлённой волны, соответственно, а выражения после стрелок вновь соответствуют случаю .

Коэффициент отражения

Коэффициент пропускания

Нормальное падение

В важном частном случае нормального падения света исчезает разница в коэффициентах отражения и пропускания для p - и s -поляризованных волн. Для нормального падения

Примечания

Литература

  • Сивухин Д. В. Общий курс физики. - М .. - Т. IV. Оптика.
  • Борн М., Вольф Э. Основы оптики. - «Наука», 1973.
  • Колоколов А. А. Формулы Френеля и принцип причинности // УФН . - 1999. - Т. 169. - С. 1025.

Wikimedia Foundation . 2010 .

  • Рейд, Фиона
  • Баслаху

Смотреть что такое "Формулы Френеля" в других словарях:

    ФРЕНЕЛЯ ФОРМУЛЫ - определяют отношения амплитуды, фазы и состояния поляризации отражённой и преломлённой световых волн, возникающих при прохождении света через границу раздела двух прозрачных диэлектриков, к соответствующим хар кам падающей волны. Установлены… … Физическая энциклопедия

    ФРЕНЕЛЯ ФОРМУЛЫ - определяют амплитуды, фазы и поляризации отраженной и преломленной плоских волн, возникающих при падении плоской монохроматической световой волны на неподвижную плоскую границу раздела двух однородных сред. Установлены О.Ж. Френелем в 1823 … Большой Энциклопедический словарь

    Френеля формулы - определяют амплитуды, фазы и поляризации отражённой и преломлённой плоских волн, возникающих при падении плоской монохроматической световой волны на неподвижную плоскую границу раздела двух однородных сред. Установлены О. Ж. Френелем в 1823. * *… … Энциклопедический словарь

    ФРЕНЕЛЯ ИНТЕГРАЛЫ - специальные функции Ф. и. представляют в виде рядов Асимптотич. представление при больших х: В прямоугольной системе координат (х, y)проекциями кривой где t действительный параметр, на координатные плоскости являются Корню спираль и кривые (см … Математическая энциклопедия

    Френеля формулы - определяют отношения амплитуды, фазы и состояния поляризации отражённой и преломленной световых волн, возникающих при прохождении света через неподвижную границу раздела двух прозрачных диэлектриков, к соответствующим характеристикам… … Большая советская энциклопедия

    ФРЕНЕЛЯ ФОРМУЛЫ - определяют амплитуды, фазы и поляризации отражённой и преломлённой плоских волн, возникающих при падении плоской монохроматич. световой волны на неподвижную плоскую границу раздела двух однородных сред. Установлены О. Ж. Френелем в 1823 … Естествознание. Энциклопедический словарь

    Уравнения Френеля - Переменные, используемые в уравнениях Френеля. Формулы Френеля или уравнения Френеля определяют амплитуды и интенсивности преломлённой и отражённой волны при прохождении света (и вообще электромагнитных волн) через плоскую границу раздела двух… … Википедия

    Свет* - Содержание: 1) Основные понятия. 2) Teopия Ньютона. 3) Эфир Гюйгенса. 4) Принцип Гюйгенса. 5) Принцип интерференции. 6) Принцип Гюйгенса Френеля. 7) Принцип поперечности колебаний. 8) Завершение эфирной теории света. 9) Основание эфирной теории.… …

    Свет - Содержание: 1) Основные понятия. 2) Теория Ньютона. 3) Эфир Гюйгенса. 4) Принцип Гюйгенса. 5) Принцип интерференции. 6) Принцип Гюйгенса Френеля. 7) Принцип поперечности колебаний. 8) Завершение эфирной теории света. 9) Основание эфирной теории.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Френель, Огюстен Жан - Огюстен Жан Френель Augustin Jean Fresnel Огюстен … Википедия

Поляризованный и естественный свет. Плоская волна называется линейнополяриз о ванной или плоскополяризованной) если колебания вектора Й происходят в одной плоскости, перпендикулярной фронту волны (ее называют плоскостью поляризации волны). Монохроматическая плоская волна либо линейно поляризована, либо поляризована по эллипсу или по кругу (см. разд. 4.5). Эллиптически поляризованная волна представляет собой сумму двух взаимно пер», пендикулярных плоских волн, между колебаниями которых имеется

разность фаз. Естественный свет, испущенный нагретыми телами, является неполяризованным, поскольку направление колебаний вектора Р в каждой точке быстро и хаотически меняется. Смесь естественного и поляризованного света называется частично поляризованным светом.

Поляризатором называется устройство, поглощающее свет, поляризованный в одной плоскости, но пропускающее свет, поляризованный в перпендикулярной плоскости. Плоскость поляризации прошедшего света называют плоскостью пропускания поляризатора. Если естественный свет пропустить через поляризатор, то он станет линейно поляризованным, а его интенсивность уменьшится в два раза (если нет поглощения в плоскости пропускания поляризатора). Если линейно поляризованный свет интенсивностью пропустить через поляризатор, плоскость пропускания которого составляет угол а с плоскостью колебаний световой волны, то интенсивность прошедшей волны будет составлять

(закон Малюса). Объясняется это тем, что линейно поляризованный свет с амплитудой представляет собой сумму двух линейно поляризованных волн: волна, поляризованная в плоскости пропускания (ее амплитуда равна , пройдет через поляризатор без изменений, а вторая волна будет поглощена.

Отражение и преломление волн. Формулы Френеля.

Интенсивность и поляризация отраженной и преломленной волн зависят от того, как поляризована падающая волна. Запишем граничные условия на поверхности раздела двух сред:

Здесь нижние индексы обозначают тангенциальную и нормальную компоненты, а верхние индексы соответствуют падающей, отраженной и преломленной волнам. Для плоской монохроматической волны

соотношения для волновых векторов (рис. 75) имеют вид:

где . Из этих соотношений получим закон отражения. В случае, когда приходим к закону Снеллиуса: Если то происходит полное отражение: оказывается мнимым, т.е. амплитуда прошедшей волны экспоненциально затухает с характерной глубиной проникновения

Амплитуды прошедшей и отраженной волн зависят от поляризации падающей волны. Приведем результат для отраженных волн:

(формулы Френеля). Здесь первая формула относится к волне, поляризованной в плоскости падения, а вторая - к волне, поляризованной в перпендикулярной плоскости. Видно, что при угле падения, удовлетворяющем условию волна, поляризованная в плоскости падения, отражаться не будет. Так как в этом случае , то угол падения, при котором отраженная волна будет линейно поляризованной перпендикулярно плоскости падения (угол Брюстера), удовлетворяет соотношению:

Качественное объяснение состоит в том, что в этом случае направление колебаний диполей (указаны на рисунке), возбужденных во второй среде волной, поляризованной в плоскости падения, оказывается параллельным направлению отраженной волны (отраженный и преломленный лучи взаимно перпендикулярны"). Но осциллятор не излучает волну в направлении своих колебаний (см. разд. 4.5).

В случае нормального падения различие между поляризациями пропадает:

Видно, что при отражении от оптически более плотной среды фаза колебаний сменяется на противоположную (точнее, к фазе добавляется ).

Отношение отраженной энергии к энергии падающей называется коэффициентом отражения. При нормальном падении он равен

Коэффициент пропускания равен Коэффициенты зависят только от относительного показателя преломления двух сред.

Пример. Просветление оптики. Коэффициент отражения стекол в оптических приборах невелик (несколько процентов). Тем не менее важной задачей

является уменьшение отражения для определенных длин волн. Для этого на поверхность наносят прозрачную пленку с показателем преломления показатель преломления стекла) и толщиной Оптическая разность хода между лучами, отраженными от поверхностей пленки, равна (изменение фазы при отражении учитывать не надо, так как оно происходит у каждого из лучей), а коэффициенты отражения на этих поверхностях будут близки друг к другу (см. формулу (15)). В результате произойдет почти полное гашение отраженного света.

Оптически анизотропные среды. В случае сред, обладающих анизотропией, векторы в общем случае уже не параллельны друг другу. Линейная связь между ними носит тензорный характер, т.е. каждая из компонент вектора Й выражается в виде линейной комбинации всех трех компонент вектора . Существуют три взаимно перпендикулярные оси, называемые диэлектрическими осями кристалла, для которых Значения называются главными диэлектрическими проницаемостями кристалла. Мы рассмотрим только случай одноосных кристаллов, у которых две из трех равны друг другу Выделенная ось называется оптической осью кристалла.

При распространении в одноосном кристалле плоской волны вводят главное сечение кристалла - плоскость, проходящую через оптическую ось и вектор нормали к фронту волны. Оказывается, что распространение линейно поляризованной световой волны зависит от направления ее поляризации. Волна, поляризованная перпендикулярно главному сечению, называется обыкновенной. Скорость распространения такой волны не зависит от направления;

колебания векторов направлены одинаково; направление распространения энергии (т.е. вектора Пойнтинга ) перпендикулярно фронту волны. Волна, поляризованная параллельно главному сечению, называется необыкновенной. Скорость ее распространения зависит от угла между и оптической осью (при угле между ними она равна Колебания векторов происходят в разных направлениях, вектор Пойнтинга не перпендикулярен к фронту волны (нормаль к фронту волны параллельна ). Разница между обыкновенным и необыкновенным лучами исчезает только при распространении света параллельно оптической оси.

При падении света на поверхность кристалла он разделяется на обыкновенный и необыкновенный лучи, линейно поляризованные перпендикулярно друг другу и имеющие разные показатели преломления. Закону преломления (см. разд. 5.1) подчиняется направление распространения фронта необыкновенной волны, сам же луч может выйти из плоскости падения. Даже при нормальном падении луча на кристалл, вырезанный под углом к оптической оси, происходит пространственное разделение лучей (рис. 76). Положения

фронтов указаны черточками, положение оптической оси - стрелкой. Необыкновенный луч поляризован в плоскости чертежа, обыкновенный перпендикулярно ей.

Для получения и анализа поляризованного света используют поляризационные призмы (николи), разрезанные под углом к распространению лучей таким образом, что обыкновенный луч испытывает на плоскости разреза полное отражение и уходит в сторону, а необыкновенный луч проходит прямо. Другой способ получения поляризованного света основан на различии в поглощении обыкновенного и необыкновенного лучей в некоторых веществах. При пропускании света через дихроичную пластину (пластинку турмалина, поляроид) обыкновенный луч поглощается, и наружу выходит линейно поляризованный необыкновенный луч.

Для анализа характера поляризации света изучают зависимость интенсивности от ориентации николя. Если интенсивность не меняется, то свет либо естественный, либо поляризован по кругу. Чтобы различить эти случаи, используют пластинку в четверть волны, или компенсатор. Толщина пластинки подобрана так, чтобы разность хода между обыкновенным и необыкновенным лучами равнялась Сдвиг фаз между взаимно перпендикулярными колебаниями станет равным либо нулю, либо и круговая поляризация превратится в линейную.

Вращение плоскости поляризации. При распространении в некоторых веществах (их называют оптически активными) линейно поляризованного света происходит вращение плоскости поляризации. Угол поворота пропорционален толщине пластины: где а - вращение на единицу длины. В зависимости от направления поворота различают право- и левовращающие вещества. Пример - пластинка кварца, вырезанная перпендикулярно оптической оси (кварц бывает как лево-, так и правовращающим). В растворах оптически активного вещества в неактивном растворителе а пропорционально концентрации. Молекулы активных веществ обладают асимметрией по отношению к правому и левому вращению по типу спирали. Явление вращения плоскости поляризации можно охарактеризовать как круговое двойное лучепреломление. Волны, поляризованные по кругу в разные стороны, распространяются с разными скоростями, т.е. разность фаз между ними меняется. Сумма двух таких колебаний представляет собой линейное колебание, направление которого зависит от разности фаз.

Искусственная анизотропия. При помещении многих изотропных тел в однородное электрическое поле у них возникает одноосная анизотропия с оптической осью, ориентированной параллельно напряженности поля (электр о оптический эффект Керра). Разность хода между обыкновенным и необыкновенным лучами при распространении света перпендикулярно Р пропорциональна квадрату напряженности:

где I - толщина слоя вещества, а В называется постоянной Керра. Искусственная анизотропия возникает в тех случаях, когда поляризуемость молекул вещества зависит от их ориентации по отношению к полю. Аналогичный эффект возникает при помещении некоторых веществ в магнитное поле (эффект Коттона-Мутона). Он описывается соотношением

При помещении неактивных веществ в сильное магнитное поле может возникнуть оптическая активность для света, распространяющегося параллельно вектору Й (магнитное вращение плоскости поляризации). Вращение на единицу длины в этом случае (для и парамагнетиков) пропорционально величине магнитной индукции: где называется постоянной Верде.

Формулы Френеля (классическая электродинамика).

Рассмотрим падение плоской гармонической электромагнитной волны на границу раздела двух однородных изотропных непроводящих сред (рис.). Нормаль к поверхности раздела определена вектором , углы между нормалью и направлениями распространения падающей, отражённой и преломлённой волн обозначены символом с подстрочным индексом , или соответственно. Направления распространения описанных плоских волн заданы единичными ортами , и . Вектор в последующих выкладках является радиус-вектором точки наблюдения, а величины и - это фазовые скорости распространения волны в первой (падающая и отражённая волна) и во второй (преломлённая волна) среде. Полагаем, что плоскость поляризации электромагнитной волны является плоскостью колебаний вектора напряжённости электрического поля. Электромагнитную волну с произвольной ориентацией плоскости поляризации представляем в виде суперпозиции двух волн - волны с плоскостью поляризации, параллельной плоскости падения, и волны с плоскостью поляризации, перпендикулярной плоскости падения. Таким образом, получаем соотношение:

Если амплитуды колебаний вектора напряжённости электрического поля падающей волны равны соответственно и для той или иной ориентации плоскости поляризации, то имеют мест соотношения:

. (3)

Эти отношения справедливы для выбранных положительных направлений векторов и , показанных на рис. (ось перпендикулярна плоскости рисунка и направлена «на нас», вектор направлен по оси ).

Для вектора напряжённости магнитного поля в падающей волне воспользуемся полученными ранее результатами:

В соотношении (4) вектор - волновой вектор ( , где - длина волны). В соответствии с результатом (4) запишем координатное представление вектора напряжённости магнитного поля падающей волны:

,

.

Пусть - комплексная амплитуда преломлённой волны, при этом направлена «на нас» вдоль оси , а перпендикулярна вектору и направлена в сторону оси . Описанные ориентации амплитуд условно принимаются положительными. Для составляющих электромагнитного поля в преломлённой волне, также как и в падающей волне, получаем зависимости:

, ,

, , (6)

, .

В выражениях (6) мгновенная фаза гармонических колебаний имеет вид:

. (7)

Продолжим описание взаимодействия плоской волны с границей раздела сред. Пусть - комплексная амплитуда отражённой волны, при этом направлена «на нас» вдоль оси , а перпендикулярна вектору и направлена в сторону оси . Описанные ориентации амплитуд условно принимаются положительными. Для составляющих электромагнитного поля в отражённой волне, также как и в падающей волне, получаем зависимости:

, ,

, , (8)

, .

Для отражённой волны мгновенная фаза гармонических колебаний имеет вид:

. (9)

Выписанные выше выражения для мгновенных значений координатных составляющих электромагнитного поля справедливы в любой точке плоскости падения и в любой момент времени.

В соответствии с общими интегральными теоремами электродинамики на границе раздела двух сред ( - координата радиус-вектора точки наблюдения равна нулю) в любой момент времени должны выполняться условия непрерывности касательных компонент вектора напряжённости электрического поля и касательных компонент напряжённости магнитного поля . Последнее условие справедливо, если на поверхности раздела сред отсутствует поверхностная плотность тока проводимости.

Итак, при z=0 требуем выполнения условий:

, , (10)

, . (11)

Обеспечить выполнение условий (10)-(11) в произвольный момент времени можно только, если потребовать выполнения равенства экспоненциальных множителей в выражениях для компонент векторов и на границе раздела. Приравнивая друг другу выражения и при z=0 , убеждаемся, что угол падения равен углу отражения: . Приравнивая друг другу выражения и при z=0 , убеждаемся, что справедлив закон синусов Снеллиуса: синус угла падения относится к синусу угла преломления как фазовая скорость падающей волны к фазовой скорости преломлённой волны (или как показатель преломления второй среды относится к показателю преломления первой среды). Ранее описанный приём был использован безотносительно к природе плоской волны (раздел). Ниже будем пользоваться установленными результатами.

Четыре уравнения (10)-(11) распадаются на две независимые системы:

(12)

(13)

Факт расщепления условий сопряжения электромагнитного поля на границе раздела сред на две независимые системы уравнений служит обоснованием гипотезы Френеля о возможности рассматривать по отдельности явления отражения и преломления световых волн, колебания в которых параллельны или перпендикулярны плоскости падения волны.

Уравнения (12)-(13) записаны с использованием приближения , при этом , . Осталось только решить системы уравнений (12) и (13). После несложных выкладок с использованием известных соотношений между тригонометрическими функциями получаем результаты:

(14)

(15)

Для удобства практических расчётов приведём решения систем уравнений (12)-(13) с использованием понятия показатель преломления:

(16)

(17) Соотношения (14) и (15) позволяют получить соответствующие выражения и для компонент напряжённости магнитного поля, при желании читатель имеет возможность эти выкладки проделать самостоятельно.

Соотношения (14)-(15) полностью решают рассматриваемую проблему. Они получены с использованием условий непрерывности касательных составляющих векторов напряжённости электрического и магнитного полей на границе раздела двух сред (10)-(11). Но из интегральных теорем классической электродинамики следуют определённые условия, которым должны удовлетворять нормальные к границе раздела составляющие тех же векторных полей:

В условии (18) величина - это поверхностная плотность свободных электрических зарядов. Если в уравнение (18) подставить полученные выше решения и воспользоваться приближением исчезающее малого отличия магнитной проницаемости сред от единицы,

то получим с учётом второго из уравнений системы (12), которое выше использовалось для получения решения, что на поверхности раздела сред действительно не может быть отличной от нуля поверхностной плотности свободных электрических зарядов. А если в уравнение (19) подставить полученные выше решения, то с той же степень точности получаем второе из уравнений системы (13). Таким образом, можно считать доказанным, что нормальные компоненты векторов напряжённости электрического и магнитного поля

удовлетворяют условиям на границе раздела двух сред. Мы ещё раз имеем возможность убедиться в том, насколько внутренне строго организована электромагнитная волна.

Экспериментальная проверка формул Френеля основана на измерении отношения интенсивности отражённой волны к интенсивности падающей волны. Если падающий свет является естественным, осреднённые значения квадратов амплитуд колебаний и совпадают, при этом справедливо соотношение:

, (20)

где - интенсивность естественного падающего света, - интенсивность отражённого частично поляризованного света. Соотношение (20) многократно экспериментально проверялось, оно хорошо описывает экспериментальные результаты. Ради полноты обсуждения проблемы заметим, что в оптике известны случаи отклонения от формул Френеля, но связаны они не с основами электродинамики, а с тем, что выше рассматривалась идеализированная модель явления, упрощённо описывающая свойства поверхности раздела и, вообще говоря, динамические свойства материальных сред.

Сравнивая выражения (14) и (15) с «формулами Френеля», убеждаемся в их идентичности. Но в рамках классической электродинамики в отличие от теории Френеля не содержится внутренне противоречивых элементов, правда, – следует и об этом не забывать – к такому триумфу физики шли около 40 лет.

Наклонное падение плоской гармонической электромагнитной волны на границу раздела сред диэлектрик-проводник .

Целью настоящего раздела является описание явления отражения-преломления плоской однородной гармонической волны при её наклонном падении на плоскую границу раздела диэлектрической среды и проводящей среды. Необходимость вернуться к этому вопросу после рассмотрения формул Френеля для случая наклонного падения электромагнитной волны на границу раздела двух диэлектрических сред обусловлена некоторыми новыми специфическими закономерностями явления, которые возникают из-за того, что одна из сред является проводящей.

Переменное электромагнитное поле описывается системой уравнений Максвелла в дифференциальной форме, величины диэлектрической и магнитной проницаемостей и удельной электропроводности гипотетической (т.е. модельной) среды считаем независящими от времени и пространственных координат. В непроводящей среде (диэлектрик) выполняется условие .

Решение системы уравнений Максвелла представляем в форме плоских гармонических бегущих волн:

где - текущее время, - круговая частота волны, - период колебаний физической величины, принимающей участие в волновом процессе. Здесь - вектор напряжённости электрического поля, - вектор напряжённости магнитного поля, - вектор электрического смещения, - вектор магнитной индукции, - объёмная плотность сторонних электрических зарядов. Предполагаем, как и прежде, что круговая частота является вещественной постоянной скалярной величиной, а вектор - радиус-вектором точки наблюдения. Волновой вектор ниже рассматриваем как вектор с комплексными компонентами:

где отличные друг от друга по величине и направлению векторы и имеют вещественные компоненты.

Векторные величины в соотношении (1) будем считать постоянными векторными величинами (амплитудами плоских гармонических волн). Результаты вычисления дивергенции и ротора векторных величин (1) были не один раз описаны в предыдущих разделах. Таким образом, система уравнений переменного гармонического электромагнитного поля, записанная для векторов напряжённости электрического и магнитного полей, формально приобретает «алгебраический» вид.