Синапс. Понятие о синапсе, виды, строение и роль в проведении нервного импульса. Понятие о медиаторах, виды медиаторов. Строение и виды синапсов

Синапс- место контакта одного нейрона с другим, на который воздействуют иннервируемым органом.

Виды синапсов:

· По месту контактов (нейрональные, аксодендричекий, дендродендрический,аксомальный, аксосамальный, дендросомальный, нервно-мышечный, нейросекреторный)

· Возбуждаюшие и тормозные

· Химические(проводят импульс в одном напралении) и электрические(проводят нервный импуьс в любом направлении, более узкая синаптическая щель, быстрая скорость проведения, имеются у беспозвоночный и нисших позвоночных животных).

Строение.

1. Педсинаптический отдел

2. Синаптическая щель

3. Постсинаптический отдел

4. Визикулы- пузырьки с медиатором

5. Медиаор – химическое вещество, которое либо проводит возбуждение, либо блокирует его

В постсинаптической мембране находятся рецепторы, чувствительные к данному типу медиатора.У большинства синапсов постсинаптическая мембрана складчатая, для увеличения площади поверхности.

Роль в проведении.

Возбуждение через синапсы передается химическим путем с помощью особого вещества – посредника, или медиатора, находящегося в синаптических пузырьках, расположенных в пресинаптической терминали. В разных синапсах вырабатываются разные медиаторы. Чаще всего это ацетилхолин, адреналин или норадреналин.

Выделяют также электрические синапсы. Они отличаются узкой синаптической щелью и наличием поперечных каналов, пересекающих обе мембраны, т. е. между цитоплазмами обоих клеток есть прямая связь. Каналы образованы белковыми молекулами каждой из мембран, соединенных комплементарно. Схема передачи возбуждения в таком синапсе подобна схеме передачи потенциала действия в гомогенном нервном проводнике.

В химических синапсах механизм передачи импульса следующий. Приход нервного импульса в пресинаптическое окончание сопровождается синхронным выбросом в синаптическую щель медиатора из синаптических пузырьков, расположенных в непосредственной близости от нее. Обычно в пресинаптическое окончание приходит серия импульсов, частота их возрастает при увеличении силы раздражителя, приводя к увеличению выделения медиатора в синаптическую щель. Размеры синаптической щели очень малы, и медиатор, быстро достигая постсинаптической мембраны, взаимодействует с ее веществом. В результате этого взаимодействия структура постсинаптической мембраны временно изменяется, проницаемость ее для ионов натрия повышается, что приводит к перемещению ионов и, как следствие, возникновению возбуждающего постсинаптического потенциала. Когда этот потенциал достигает определенной величины, возникает распространяющееся возбуждение – потенциал действия. Через несколько миллисекунд медиатор разрушается специальными ферментами.



Выделяют также особые синапсы тормозного действия. Полагают, что в специализированных тормозящих нейронах, в нервных окончаниях аксонов вырабатывается особый медиатор, оказывающий тормозящее воздействие на последующий нейрон. В коре больших полушарий головного мозга таким медиатором считают гамма-аминомасляную кислоту. Структура и механизм работы синапсов тормозного действия аналогичны таковым у синапсов возбуждающего действия, только результатом их действия является гиперполяризация. Это ведет к возникновению тормозного постсинаптического потенциала, в результате чего наступает торможение

Медиаторы синапса

Медиатор (от латинского Media - передатчик, посредник или середина). Такие медиаторы синапса очень важны в процессе передачи нервного импульса.

Морфологическое различие тормозного и возбуждающего синапса заключается в том, что они не имеют механизм освобождения медиатора. Медиатор в тормозном синапсе, мотонейроне и другом тормозном синапсе считается аминокислотой глицином. Но тормозной или возбуждающий характер синапса определяется не их медиаторами, а свойством постсинаптической мембраны. К примеру, ацетилхолин дает возбуждающее действие в нервно-мышечном синапсе терминалей (блуждающих нервов в миокарде).

Ацетилхолин служит возбуждающим медиатором в холинэргических синапсах (пресинаптическую мембрану в нем играет окончание спинного мозга мотонейрона), в синапсе на клетках Рэншоу, в пресинаптическом терминале потовых желез, мозгового вещества надпочеников, в синапсе кишечника и в ганглиях симпатической нервной системы. Ацетилхоли-нестеразу и ацетилхолин нашли также во фракции разных отделов мозга, иногда в большом количестве, но кроме холинэргического синапса на клетках Рэншоу пока не смогли идентифицировать остальные холинэргические синапсы. По словам ученых, медиаторная возбуждающая функция ацетилхолина в ЦНС весьма вероятна.



Кателхомины (дофамин, норадреналин и адреналин) считаются адренэргическими медиаторами. Адреналин и норадреналин синтезируются в окончании симпатического нерва, в клетке головного вещества надпочечника, спинного и головного мозга. Аминокислоты (тирозин и L-фенилаланин) считаются исходным веществом, а адреналин заключительным продуктом синтеза. Промежуточное вещество, в которое входят норадреналин и дофамин, тоже выполняют функцию медиаторов в синапсе, созданных в окончаниях симпатических нервов. Эта функция может быть либо тормозной (секреторные железы кишечника, несколько сфинктеров и гладкая мышца бронхов и кишечника), либо возбуждающей (гладкие мышцы определенных сфинктеров и кровеносных сосудов, в синапсе миокарда - норадреналин, в подкровных ядрах головного мозга - дофамин).

Когда завершают свою функцию медиаторы синапса, катехоламин поглощается пресинаптическим нервным окончанием, при этом включается трансмембранный транспорт. Во время поглощения медиаторов синапсы находятся под защитой от преждевременного истощения запаса на протяжении долгой и ритмичной работы.

Синапс-структурно-функциональное образование, которое обеспечивает передачу возбуждающих или тормозных влияний с нервной клетки на другую инервируемую ей клетку.

Виды синапсов:

По локализации : центральные, перифирические.

Центральные-синапсы в пределах ЦНС-контакт между 2-мя нейронами.

Виды центральных:аксональные,аксосоматические,дендросоматические,дендродендриты.

Перифирические-находятся за пределами ЦНС.

Виды:нервно-мышечные, нейроэпителиальные,вегетативных ганглиев.

По мех-му передачи: химические(передача инф-ии с помощью медиаторов) , электрические(щелевидные контакты, передача инф-ии идет с помощью круговых токов-сердечная, гладкие мышцы, ЦНС), смешанные

По виду медиатора(для хим-их): холинэргические(ацетилхолин),адренэргические(норадреналин),гамкэргические(ГАМК к-та),глицинэргические.

По функции : возбуждающие(обеспечивают передачу возбуждения на иннервируемую клетку.Возникает возбуждающий постсинаптический потенциал(ВПСП)-деполяризующие), тормозные(хар-ся ТПСП-гиперполяризующие синапсы).

Строение синапса.

Пресинаптическая мембрана

Постсинаптическая мембрана

Синаптическая щель(между 1и 2)

Пресинапич.мемб- элетрогенная мембрана,которая покрывает терминаль аксона в области синапса. Она содержит

Синаптич.пузырьки(они заполнены ацетилхолином)

Митохондрии(содержат микрофиламенты и сократительные белки)

Постсинаптическая мемб-утолщена,складчатая поверхность. На ней содержатся белки:белки рецепторы(в них ионные каналы), белки с ферментативной активностью.

Синаптическая щель(заполнена жидкостью, по составу близкой к плазме)Через нее проходят фиброзные нити(базальная мембрана)

Мех-м передачи возбуждения через синапс(в основе квантовая теория)

1.По нервному волокну распространяется потенциал действия к пресинаптической терминали

2.Пресинаптическая мембрана деполяризуется

3.Повыш-ся проницаемость кальциевых каналов этой мембраны и иона Са из синаптич. щели проникают внутрь пресинаптической терминали.

4.Синаптические пузырьки упорядочиваются вдоль пресинаптической мембраны

5.При участии ионов Са начин-ся нейросекреция медиатора в синаптическую щель.

6.Синаптич. пузырьки сливаются с мембр. и путем экзоцитоза выделяют ацетилхолин с син.щель

7.На 1 потенциал действия нервн-го волокна у млекопитающих выделяется 200-300 квантов медиатора.Кол-во медиатора прямо-пропорционально зависит от амплитуды потенциала действия нервного волокна(от силы раздражений)

8.Путем диффузии по базальной мемб. ацетилхолин достигает постсинаптической мембраны

9.Молекулы ацетилхолина взаимодействуют с белком-рецептором

10.Изменяется конфигурация белка и открывается встроенный в него ионный канал.

11.Через каналы двигаются ионы Na(выходят из клетки)

12.Заряд постсинаптической мембраны изменяется,возникают потенциалы концевой пластинки.

13.Эти потенциалы стимулируются, достигают пороговой величины и вызывают развитие возбуждения в инервируемой клетке.

14.В мышечном волокне возникает потенциал действия приводящий к сокращению мышцы.

Клапанный аппарат сердца. Виды клапанов, механизмы их работы во время цикла сердечной деятельности.

2 вида клапанов: предсердно-желудочковые(атриовентрикулярные), полулунные.

Атриовентрикулярные (створчатые).В правой половине -3-х створчатый, в левой-2-х.

К створкам клапанов прикрепляются сухожильные нити-хорды, а другим концом нити прикрепляются к сосочковым мышцам.

Полулунные . Имеют форму 3-х карманов. Располагаются в месте выхода из желудочков крупных сосудов(из левого жел-аорта,из правого-легочный ствол)

Механизм работы клапанов.

Работа сердца представл. собой чередование фаз сокращения(систолы) и расслабления(диастолы

При частоте сердечных сокращений 70-75 в 1 минуту 1 сердечн цикл длится-0,8-0,86 сек

В сердечном цикле различают систолу и диастолу предсердий и желудочков.

Общая пауза-промежуток времени в течение которого и предсердия и желудочки находятся в фазе диастолы. Общ.пауза составляет о,4 сек или 50% серд.цикла

Во время общей паузы сердце наполняется кровью,сердечная мышца отдыхает и расслабляется,обеспечивает интенсивный приток крови к сердцу.

Компоненты систолы и диастолы желудочков-сложные фазы, а предсердий-простые.

Компоненты систолы желудочков:

-период напряжения :1)фаза асинхронного сокращ.Сокращ-ся межжелудочк.перегородка, сосочковые мышцы и закрываются атриовентрикулярные клапаны.

2)фаза изометрического сокращения.Осуществляется при закрытых клапанах.Давление в желудочках возрастает и становится больше, чем в аорте и легочном стволе. За счет разности давления открываются полулунные клапаны. Наступает период изгнания крови из желудочков.

-период изгнания :1)фаза максимально быстрого изгнания,2)фаза медленного изгнания

Компоненты диастолы желудочков:

-протодиастолический период (от начала расслабления до закрытия полулунных клапанов).

В момент расслабления в жел. давление снижается и становится < чем в сосудах. За счет разности давления кровь стремится назад в жел.,заполняет кармашки клапанов и они закрываются.

-фаза изометрического расслабления. Протекает при закрытых клапанах. Желудочки продолжают расслабляться, давление становится <чем в предсердиях.Створчатые клапаны открываются.Наступает период наполнения желудочков кровью(включ. в себя фазу быстрого и медленного наполнения)

-пресистола

Дыхательная функция крови. Транспорт кислорода. Формы транспорта двуокиси углерода в плазме крови и эритроцитах.

О 2 переносится от легких к тканям 2 формами:

1.соединение О 2 с гемоглобином (Fe –гем,глобин(белковая часть)Образуется оксигемоглобин. В результате взаимод. О 2 с гемом, Fe остается 2-х валентным, не окисляется, р-я называется-оксигенация

1г гемоглобина связывает и переносит 1,345 мл О 2

Кислородная емкость крови- кол-во О 2 , кот.связывает гемоглобин в 100 мл крови

2.физическое растворение газа в крови.

СО 2 переносится от тканей к легким. Существует 3 транспортные формы:

1.соединение СО 2 с бикарбонатами(K 2 CO 3 -в эритроцитах соединяется,

Na 2 CO 3 –в плазме крови

2. СО 2 с гемоглобином(белковой частью)образуется карбгемоглобин.

3.Физическое растворение

Внутреннее тканевое дыхание осущ-ся на территории тканей. Состоит из 2-х этапов:

1.газообмен между капиллярами большого круга кровообращения и тканями.

2.собственно тканевое дыхание(истинное биологическое окисление энергии митохондрий)

Доказательством внутреннего дыхания явл. Артерио-венозная разница по О 2

артер. кровь венозная кровь

СО 2 50-52% 55-57%

Билет 21

1.Кровяное давление, его виды. Величина кровяного давления в различных отделах кровяного русла. Факторы, обуславливающие величину кровяного давления и методы его определения. Показатели артериального кровяного давления.

Кровяное давление, т.е. давление крови на стенки кровеносных сосудов, измеряется в миллиметрах ртутного столба.В зависимости от вида сосуда, по которому течет кровь, различают артериальное, венозное и капиллярное давление крови.

Величину артериального давления характеризуют:

-Систолическое давление -самое высокое давление крови в артериях, наблюдается во время систолы левого желудочка и характеризует состояние миокарда левого жел. 110-120мм рт. ст.

-Диастолическое -давление на стенки сосудов в фазу диастолы. Оно характеризует степень тонуса артериальных стенок.60-80мм рт. ст.

-Пульсовое давление -разность между систолическим и диастолическим.35-55 мм рт.ст.Только при таких условиях во время систолы левого желудочка клапан аорты открывается полностью и кровь из левого желудочка поступает в большой круг кровообращения.

-Среднее гемодинамическое -сумма диастолич. и 1/3 пульсового. Выражает энергию непрерывного движения крови, довольно постоянная величина для сосуда 70-95 мм рт. ст.

На величину артериального давления оказывают действие рефлекторные влияния со слизистыз полости рта и языка, а также возраст, время суток, состояние организма, ЦНС-ы.

У животных артериальное давление измеряется бескровным и кровавым способом. У человека только бескровными способами: пальпаторным(метод Рива-Роччи) и аускультативным(метод Н.С.Короткова)

Для этого могут быть использованы:сфигмоманометр Рива-Роччи, сфигмотонометр(тонометр мембранного типа)

Прибор для измерения артериального давления состоит из полой резиновой манжеты, манометра и груши для нагнетания воздуха в манжету.Метод основан на определении давления, создаваемого в манжете прибора,которая сдавливает плечевую артерию, нарушая движение в ней крови.

В основе аускультативного метода определения артериального давления лежит выслушивание сосудистых тонов. В несдавленной артерии звуки отсутствуют.Если поднять давление в манжете выше уровня систолического, то манжета полностью прерывает просвет артерии и кровоток в ней прекращается. Если постепенно выпускать воздух из манжеты, то в момент когда давление в ней станеь чуть ниже систолического, кровь в момент систолы преодолевает суженный участок и ударяется о его стенку ниже наложения манжеты. При ударе о стенку артерии порции крови, движущейся с большой скоростью и кинетической энергией, возникает звук(сосудистые тоны), слышимый ниже наложения манжеты


Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Рязанский государственный университет имени С.А. Есенина»

Институт психологии, педагогики и социальной работа

Контрольная работа по дисциплине «Нейрофизиология и основы ВНД»

по теме: «Понятие о синапсе, строение синапса.

Передача возбуждения в синапсе»

Выполнил студент 13Л группы

1курса ОЗО(3) А.И. Шарова

Проверил:

профессор медицинских наук

О.А. Белова

Рязань 2010

1. Введение……………………………………………………………..3

2. Структура и функции синапса……………………………………...6

3. Передача возбуждения в синапсе………………………………….8

4. Химический синапс…………………………………………………9

5. Выделение медиатора……………………………………………...10

6. Химические медиаторы и их виды………………………………..12

7. Заключение……………………………………………………………15

8. Список литературы………………………………………………....17

Введение .

Наше тело - один большой часовой механизм. Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм - тело, состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую цепочку, сверхсистему организма. Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Особую роль в регуляции играет нервная система. Вся сложная работа нервной системы - регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека - все это, в сущности, основано на взаимодействии клеток между собой. Все это, в сущности, основано на передаче сигнала от одной клетке к другой. Причем, каждая клетка выполняет свою работу, а иногда имеет несколько функций. Разнообразие функций обеспечивается двумя факторами: тем, как клетки соединены между собой, и тем, как устроены эти соединения. Переход (передача) возбуждения с нервного волокна на иннервируемую им клетку (нервную, мышечную, секреторную) осуществляется через специализированное образование, которое получило название синапс.

Структура и функции синапса.

Каждый многоклеточный организм, каждая ткань, состоящая из клеток, нуждается в механизмах, обеспечивающих межклеточные взаимодействия. Рассмотрим, как осуществляются межнейронные взаимодействия. По нервной клетке информация распространяется в виде потенциалов действия. Передача возбуждения с аксонных терминалей на иннервируемый орган или другую нервную клетку происходит через межклеточные структурные образования - синапсы (от греч. «Synapsis» -соединение, связь). Понятие синапс было введено английским физиологом Ч. Шеррингтоном в 1897 году, для обозначения функционального контакта между нейронами. Следует отметить, что еще в 60-х годах прошлого столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить способы происхождения даже самого нервного элементарного процесса. Чем сложнее устроена нервная система, и чем больше число составляющих нервных мозговых элементов, тем важнее становится значение синаптических контактов.

Различные синаптические контакты отличаются друг от друга. Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции. Поэтому сначала опишем общие принципы их функционирования.

Синапс - представляет собой сложное структурное образование, состоящее из

    пресинаптической мембраны - электрогенная мембрана в терминале аксона, образует синапс на мышечной клетке (чаще всего это концевое разветвление аксона)

    постсинаптической мембраны - электрогенная мембрана иннервируемой клетки, на которой образован синапс (чаще всего это участок мембраны тела или дендрита другого нейрона)

    синаптической щели - пространство между пресинаптической и постсинаптической мембраной, заполнена жидкостью, которая по составу напоминает плазму крови

Синапсы могут быть между двумя нейронами (межнейронные) , между нейроном и мышечным волокном (нервно-мышечные) , между рецепторными образованиями и отростками чувствительных нейронов (рецепторно-нейронные) , между отростками нейрона и другими клетками (железистыми) .

Существует несколько классификаций синапсов.

1. По локализации :

1) центральные синапсы;

2) периферические синапсы.

Центральные синапсы лежат в пределах центральной нервной системы, а также находятся в ганглиях вегетативной нервной системы.

Центральные синапсы – это контакты между двумя нервными клетками, причем эти контакты неоднородны и в зависимости от того, на какой структуре первый нейрон образует синапс со вторым нейроном, различают:

а) аксосоматический, образованный аксоном одного нейрона и телом другого нейрона;

б) аксодендритный, образованный аксоном одного нейрона и дендритом другого;

в) аксоаксональный (аксон первого нейрона образует синапс на аксоне второго нейрона);

г) дендродентритный (дендрит первого нейрона образует синапс на дендрите второго нейрона).

Различают несколько видов периферических синапсов :

а) мионевральный (нервно-мышечный), образованный аксоном мотонейрона и мышечной клеткой;

б) нервно-эпителиальный, образованный аксоном нейрона и секреторной клеткой.

2. Функциональная классификация синапсов :

1) возбуждающие синапсы;

2) тормозящие синапсы.

Синапс возбуждающий - синапс, в котором возбуждается постсинаптическая мембрана; в ней возникает возбуждающий постсинаптический потенциал и пришедшее к синапсу возбуждение распространяется дальше.

Синапс тормозной - А. Синапс, на постсинаптической мембране которого возникает тормозной постсинаптический потенциал, и пришедшее к синапсу возбуждение не распространяется дальше; Б. возбуждающий аксо- аксональный синапс, вызывающий пресинаптическое торможение.

3. По механизмам передачи возбуждения в синапсах :

1) химические;

2) электрические;

3) смешанные

Особенность химических синапсов заключается в том, что передача возбуждения осуществляется при помощи особой группы химических веществ – медиаторов. Отличается большей специализированностью, чем электрический синапс.

Различают несколько видов химических синапсов , в зависимости от природы медиатора:

а) холинэргические.

б) адренэргические.

в) дофаминэргические. В них происходит передача возбуждения при помощи дофамина;

г) гистаминэргические. В них происходит передача возбуждения при помощи гистамина;

д) ГАМКэргические. В них происходит передача возбуждения при помощи гаммааминомасляной кислоты, т. е. развивается процесс торможения.

Синапс адренергический - синапс, медиатором в котором является норадреналин. В нем происходит передача возбуждения при помощи трех катехоламинов; различают a1-, b1-, и b2 - адренергический синапсы. Они образуют нейроорганные синапсы симпатической нервной системы и синапсы ЦНС. Возбуждение a- адренореактивных синапсов вызывает сужение сосудов, сокращение матки; b1- адренореактивных синапсов - усиление работы сердца; b2 - адренореактивных - расширение бронхов.

Синапс холинергический - медиатором в нем является ацетилхолин. Они делятся на синапсы н-холинергические и м-холинергические.

В м-холинергическом синапсе постсинаптическая мембрана чувствительна к мускарину. Эти синапсы образуют нейроорганные синапсы парасимпатической системы и синапсы ЦНС.

В н-холинергическом синапсе постсинаптическая мембрана чувствительна к никотину. Этот вид синапсов образуют нервно-мышечные синапсы соматической нервной системы, ганглионарные синапсы, синапсы симпатической и парасимпатической нервной системы, синапсы ЦНС.

Синапс электрический - в нем возбуждение от пре- к постсинаптической мембране передается электрическим путем, т.е. совершается эфаптическая передача возбуждения - потенциал действия достигает пресинаптического окончания и далее распространяется по межклеточным каналам, вызывая деполяризацию постсинаптической мембраны. В электрическом синапсе медиатор не вырабатывается, синаптическая щель мала (2 - 4 нм) и в ней имеются белковые мостики-каналы, шириной 1 - 2 нм, по которым движутся ионы и небольшие молекулы. Это способствует низкому сопротивлению постсинаптической мембраны. Этот вид синапсов встречается значительно реже, чем химические и отличаются от них большей скоростью передачи возбуждения, высокой надежностью, возможностью двухстороннего проведения возбуждения.

Синапсы имеют ряд физиологических свойств :

1) клапанное свойство синапсов , т. е. способность передавать возбуждение только в одном направлении с пресинаптической мембраны на постсинаптическую;

2) свойство синаптической задержки , связанное с тем, что скорость передачи возбуждения снижается;

3) свойство потенциации (каждый последующий импульс будет проводиться с меньшей постсинаптической задержкой). Это связано с тем, что на пресинаптической и постсинаптической мембране остается медиатор от проведения предыдущего импульса;

4) низкая лабильность синапса (100–150 имульсов в секунду).

Передача возбуждения в синапсе.

Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, однако она значительно сдала свои позиции после того, как химический синапс был продемонстрирован в ряде периферических синапсов. Так, например, А.В. Кибяков, проведя опыт на нервном ганглии, а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциал нейронов ЦНС позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга.

Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи - это так называемые смешанные синапсы.

Если электрические синапсы характерны для нервной системы более примитивных животных (нервная диффузионная система кишечнополостных, некоторые синапсы рака и кольчатых червей, синапсы нервной системы рыб), хотя они и обнаружены в мозге млекопитающих. Во всех перечисленных выше случаях импульсы передаются посредством деполяризующего действия электрического тока, который генерируется в пресинаптическом элементе. Хотелось бы также отметить, что в случае электрических синапсов возможна передача импульсов как в одном, так и в двух направлениях. Также у низших животных контакт между пресинаптическим и постсинаптическим элементом осуществляется посредством всего одного синапса - моносинаптическая форма связи, однако в процессе филогенеза осуществляется переход к полисинаптической форме связи, то есть, когда указанный выше контакт осуществляется посредством большего числа синапсов.

Однако, в данной работе, мне хотелось бы подробнее остановиться на синапсах с химическим механизмом передачи, которые составляют большую часть синаптического аппарата ЦНС высших животных и человека. Таким образом, химические синапсы, на мой взгляд, особенно интересны, так как они обеспечивают очень сложные взаимодействия клеток, а также связаны с рядом патологических процессов и изменяют свои свойства под влиянием некоторых лекарственных средств.

Переход возбуждения с нервного волокна на иннервируемую им клетку- нервную, мышечную, секреторную- осуществляется при участии синапсов.

Синапсы - (от греч. synapsis- соединение, связь)- особый тип прерывистых контактов между клетками, приспособленных для односторонней передачи возбуждения или торможения от одного элемента к другому. Делят их в зависимости от локализации (центральные и периферические), функции (возбуждающие и тормозные),способа передачи возбуждения (химические, электрические, смешанные), природы действующего агента (холинергические или адренергические).

Синапсы могут быть между двумя нейронами (межнейронные), между нейроном и мышечным волокном (нервно-мышечные), между рецепторными образованиями и отростками чувствительных нейронов(рецепторно-нейронные), между отростком нейрона и другими клетками (железистыми, ресничными)

Основными компонентами синапса являются: пресинаптическая часть (обычно утолщенное окончание пресинаптического аксона), постсинаптическая часть (участок клетки, к которому подходит пресинаптическое окончание) и разделяющая их синаптическая щель (в синапсах с электрической передачей она отсутствует)

В простейшем типе синапса клетка иннервируется только одним волокном (аксоном). Так, в нервно-мышечном синапсе каждое мышечное волокно иннервируется аксоном одного двигательного нейрона. В сложных синапсах, например у клеток головного мозга, количество оканчивающихся аксонов может исчисляться несколькими тысячами.

Скелетные мышцы иннервируются волокнами соматической нервной системы, т.е. отростками нервных клеток (мотонейронов). расположенных в рогах спинного мозга или ядрах черепных нервов. Каждое двигательное волокно в мышце ветвится и иннервирует группу мышечных волокон. Концевые веточки нервных волокон (диаметром 1-1,5 мкм) лишены миелиновой оболочки, покрыты аксоплазматической мембраной с утолщениями и имеют расширенную колбовидную форму. Пресинаптическое окончание содержит митохондрии (поставщики АТФ), а также множество субмикроскопических образований – синаптических пузырьков (везикул) диаметром около 50 нм. Пузырьки более многочисленны в области утолщений пресинаптической мембраны.

Пресинаптические окончания аксона образуют синаптические соединения со специализированной областью мышечной мембраны (см. рис. 18). Последняя формирует углубления, складки, увеличивающие площадь поверхности постсинаптической мембраны и соответствующие утолщениям пресинаптической мембраны. Ширина синаптической щели составляет 50-100нм.

Область мышечного волокна, участвующую в образовании синапса, т.е. постсинаптическую часть контакта, называют концевой двигательной пластинкой или обозначают весь нервно-мышечный синапс.

Описанная электронно-микроскопическая картина является типичной для синапсов химической природы. Передатчиком возбуждения здесь служит посредник (медиатор)- ацетилхолин. Когда под действием нервного импульса (потенциала действия) происходит деполяризация мембраны нервного окончания, синаптические пузырьки вплотную сливаются с ней и их содержимое выбрасывается в синаптическую щель. Этому способствует повышение внутри окончания концентрации ионов кальция, поступающих извне по электровозбудимым кальциевым каналам.

Ацетилхолин выбрасывается порциями (квантами) по 4*10 молекул, что соответствует содержимому нескольких пузырьков. Один нервный импульс вызывает синхронное выделение 100-200 порций медиатора менее чем за 1 мс. Всего же запасов ацетил холина в окончании хватает на 2500-5000 импульсов. Таим образом, основное назначение пресинаптической части контакта состоит в регулируемом нервным импульсом выбросе медиатора ацетилхолина в синаптическую щель. Нервно-мышечный синапс является, холинэнергическим. Токсин ботулизма в следовых количествах блокирует освобождение ацетилхолина в синапсах и вызывает мышечный паралич.

Молекулы ацетилхолина диффундируют через щель и достигают внешней стороны постсинаптической мембраны, где связываются со специфическими рецепторами- молекулами липопротеиновой природы. Число рецепторов составляет примерно 13000 на 1 мкм;они отсутствуют в других участках мышечной мембраны. Взаимодействие медиатора с рецепторным белком (двух молекул ацетилхолина с одной молекулой рецептора) вызывает изменение конформации последнего и "открытие ворот" хемовозбудимых ионных каналов. В результате происходит перемещение ионов и деполяризация постсинаптической мембраны от -75до-10 мВ. Возникает потенциал концевой пластинки (ПКП), или возбуждающий постсинаптический потенциал (ВПСП). Последний термин применим ко всем типам химических синапсов, в том числе межнейронным.

Время от момента появления нервного импульса в пресинаптическом окончании до возникновения ПКП называется синаптической задержкой. Она составляет 0,2-0,5 мс.

Поскольку хемовозбудимые каналы не обладают электровозбудимостью, "запальная" деполяризация мембраны не вызывает дальнейшего увеличения числа активируемых каналов, как это имеет место в аксоплазматической мембране. Величина ПКП зависит от числа молекул ацетилхолина, связанных постсинаптической мембраной, т.е. в отличие от потенциала действия ПКП градуален. Амплитуда его зависит и от сопротивления мышечной мембраны (тонкие мышечные волокна имеют более высокий ПКП). Некоторые вещества, например яд кураре, связываясь с рецепторными белками, препятствуют действию ацетилхолина и подавляют ПКП. Известно, что на каждый импульс от мотонейрона в мышце всегда возникает потанцеал действия. Это обусловлено тем, что пресинаптическое окончание выделяет определенное количество квантов медиатора и ПКП всегда достигает пороговой величины.

Между деполяризованной ацетилхолином постсинаптической мембраной и граничащей с ней мембраной скелетного мышечного волокна возникают местные токи, вызывающие потенциалы действия, распространяющиеся по всему мышечному волокну. Последовательность событий, ведущих к возникновению потенциала действия, изображена на рисунке 19. Для восстановления возбудимости постсинаптической мембраны необходимо исключение деполяризующего агента- ацетилхолина. Эту функцию выполняет локализованный в синаптической щели фермент ацетилхолинэстераза, которая гидролизует ацетилхолин до ацетата и холина. Проницаемость мембраны возвращается к исходному уровню и мембрана реполяризуется. Этот процесс идет очень быстро: весь выделившийся в щель ацетилхолин расщепляется за 20 мс.

Некоторые фармакологические или токсические агенты (алкалоид физостигмин, органические фторфосфаты), ингибируя ацетилхолинэстеразу, удлиняют период ПКП, что вызывает "залпы" потенциалов действия и спастические сокращения мышцы в ответ на одиночные импульсы мотонейронов.

Образовавшиеся продукты расщепления- ацетат и холин- большей частью транспортируются обратно в пресинаптические окончания, где используются в синтезе ацетилхолина при участии фермента холин-ацетилтрансферазы (рис. 20).

Типы синапсов:

Электрические синапсы. В настоящее время признают, что в ЦНС имеются электрические синапсы. С точки зрения морфологии электрический синапс представляет собой щелевидное образование (размеры щели до 2 нм) с ионными мостиками-каналами между двумя контактирующими клетками. Петли тока, в частности при наличии потенциала действия (ПД), почти беспрепятственно перескакивают через такой щелевидный контакт и возбуждают, т.е. индуцируют генерацию ПД второй клетки. В целом, такие синапсы (они называются эфапсами) обеспечивают очень быструю передачу возбуждения. Но в то же время с помощью этих синапсов нельзя обеспечить одностороннее проведение, т. к. большая часть таких синапсов обладает двусторонней проводимостью. Кроме того, с их помощью нельзя заставить эффекторную клетку (клетку, которая управляется через данный синапс) тормозить свою активность. Аналогом электрического синапса в гладких мышцах и в сердечной мышце являются щелевые контакты типа нексуса.

Химические синапсы. По строению химические синапсы представляют собой окончания аксона (терминальные синапсы) или его варикозную часть (проходящие синапсы), которая заполнена химическим веществом - медиатором. В синапсе различают пресинаптический элемент, который ограничен пресинаптической мембраной, а также внесинаптическую область и синаптическую щель, величина которой составляет в среднем 50 нм. В литературе существует большое разнообразие в названиях синапсов. Например, синаптическая бляшка - это синапс между нейронами, концевая пластинка - это постсинаптическая мембрана мионеврального синапса, моторная бляшка - это пресинаптичсское окончание аксона на мышечном волокне.

Конец работы -

Эта тема принадлежит разделу:

1. По виду выделяемого медиатора выделяют химические синапсы двух видов:

а) адренергические (медиатором является адреналин).

б) холинергические (медиатором является ацетилхолин).

2. Электрические синапсы. Передают возбуждение без участия медиатора с большой скоростью и обладают двухсторонним проведением возбуждения. Структурной основой электрического синапса является нексус. Встречаются эти синапсы в железах внутренней секреции, эпителиальной ткани, ЦНС, сердце. В некоторых органах возбуждение может передаваться и через химические и через электрические синапсы.

3. По эффекту действия:

а) возбуждающие

б) тормозные

4. По месту расположения:

а) аксоаксональные

б) аксосоматические

в) аксодендрические

г) дендродендрические

д) дендросоматические.

Механизм передачи возбуждения в нервно-мышечном синапсе.

ПД достигая нервного окончания (пресинаптической мембраны) вызывает его деполяризацию. В результате этого внутрь окончания поступают ионы кальция. Увеличение концентрации кальция в нервном окончании способствует освобождению ацетилхолина, который выходит в синаптическую щель. Медиатор достигает постсинаптической мембраны и связывается там с рецепторами. В результате внутрь постсинаптической мембраны поступают ионы натрия и эта мембрана деполяризуется.

Если исходный уровень МПП составлял 85 мВ, то он может снижаться до 10 мВ, т.е. происходит частичная деполяризация, т.е. возбуждение пока еще не распространяется дальше, а находится в синапсе. В результате этих механизмов развивается синаптическая задержка, которая составляет от 0,2 до 1 мВ. частичная деполяризация постсинаптической мембраны называется возбуждающим постсинаптическим потенциалом (ВПСП).

Под влиянием ВПСП в соседнем чувствительном участке мембраны мышечного волокна возникает распространяющийся ПД, который и вызывает сокращение мышцы.

Ацетилхолин из пресинаптического окончания выделяется постоянно, но его концентрация невысока, что необходимо для поддержания тонуса мышцы в покое.

Для заблокирования передачи возбуждения через синапс применяют яд кураре, который связывается с рецепторами постсинаптической мембраны и препятствует их взаимодействию с ацетилхолином. Заблокировать проведение возбуждения через синапс может яд бутулин и другие вещества.

На наружной поверхности постсинаптической мембраны содержится фермент ацетилхолинэстераза, который расщепляет ацетилхолин и инактивирует его.

Принципы и особенности передачи возбуждения

в межнейральных синапсах.

Основной принцип передачи возбуждения в межнейральных синапсах такой же как и в нейромышечном синапсе. Однако существуют свои особенности:

1. Многие синапсы являются тормозными.

2. ВПСП при деполяризации одного синапса недостаточно для вызова распространяющегося потенциала действия, т.е. необходимо поступление импульсов к нервной клетке от многих синапсов.

Нервно-мышечный синапс

Классификация синапсов

1. По местоположению и принадлежности соответствующим структурам:

    периферические (нервно-мышечные, нейросекреторные, рецепторнонейрональные);

    центральные (аксо-соматические, аксо-дендритные, аксо-аксональные, сомато-дендритные. сомато-соматические);

2. По эффекту действия:

    возбуждающие

    тормозные

3. По способу передачи сигналов:

    Электрические,

    химические,

    смешанные.

4. По медиатору:

    холинергические,

    адренергические,

    серотонинергические,

    глицинергически. и т.д.

Тормозные медиаторы:

– гамма-аминомасляная кислота (ГАМК)

– таурин

– глицин

Возбуждающие медиаторы:

– аспартат

– глутамат

Оба эффекта:

– норадреналин

– дофамин

– серотонин

Механизм передачи возбуждения в синапсе

(на примере нервно-мышечного синапса)

    Выброс медиатора в синаптическую щель

    Диффузия АХ

    Возникновение возбуждения в мышечном волокне.

    Удаление АХ из синаптической щели