Самая маленькая элементарная частица. Самая маленькая частица во вселенной


Странно устроен этот мир: одни люби стремятся создать нечто монументальное и гигантское, чтобы прославиться на весь мир и войти в историю, а другие - создают минималистические копии обычных вещей и поражают ими мир не меньше. В этом обзоре собраны самые маленькие предметы, которые существуют на свете и при этом являются не менее функциональными, чем их полноразмерные аналоги.

1. Пистолет SwissMiniGun


SwissMiniGun не больше, чем обычный ключ, но он способен стрелять крошечными пулями, которые вылетают со ствола со скоростью свыше 430 км/ч. Это более, чем достаточно, чтобы убить человека с близкого расстояния.

2. Автомобиль Peel 50


При весе всего в 69 кг Peel 50 является самым маленьким автомобилем, когда-либо допущенным для использования на дорогах. Этот трехколесный «пепелац» мог развивать скорость 16 км/ч.

3. Школа Калоу


ЮНЕСКО признала иранскую школу Калоу самой маленькой в мире. В ней всего 3 ученика и бывший солдат Абдул-Мухаммед Шерани, который сейчас работает учителем.

4. Чайник весом 1,4 грамма


Он был создан мастером по керамике Ву Руишеном. Хотя весит этот чайник всего 1,4 грамма и помещается на кончике пальца, в нем можно заваривать чай.

5. Тюрьма Сарк


Тюрьма Сарк была построена на Нормандских островах в 1856 году. В ней было место всего для 2 заключенных, которые причем пребывали в очень стесненных условиях.

6. Tumbleweed


Этот дом получил название «Перакати-поле» (Tumbleweed). Он был построен Джеем Шафером из Сан-Франциско. Хотя дом меньше, чем шкафы у некоторых людей (его площадь всего 9 квадратных метров), в нем есть рабочее место, спальня и ванна с душем и туалетом.

7. Миллс Энд Парк


Миллс Энд Парк в городе Портленд - самый маленький парк в мире. Его диаметр составляет всего... 60 сантиметров. При этом в парке есть плавательный бассейн для бабочек, миниатюрное колесо обозрения и крошечные статуи.

8. Эдвард Ниньо Эрнандес


Рост Эдварда Ниньо Эрнандеса из Колумбии - всего 68 сантиметров. Книга рекордов Гиннесса признала его самым маленьким человеком в мире.

9. Полицейский участок в телефонной будке


По существу он ничуть не больше телефонной будки. Но это был действительно функционирующий полицейский участок в городе Карабелле, штат Флорида.

10. Скульптуры Уилларда Уигана


Британский скульптор Уиллард Уиган, который страдал от дислексии и плохой успеваемости в школе, нашел утешение в создании миниатюрных произведений искусства. Его скульптуры едва видно невооруженным глазом.

11. Бактерия Mycoplasma Genitalium


12. Свиной цирковирус


Хотя до сих пор идут дебаты о том, что можно считать «живым», а что нет, большинство биологов не классифицируют вирус как живой организм из-за того, что он не может воспроизводиться или не имеет метаболизма. Вирус, однако, может быть гораздо меньше, чем любой живой организм, включая бактерии. Самым маленьким является одноцепочечный ДНК вирус под названием свиной цирковирус. Его размер - всего лишь 17 нанометров.

13. Амеба


Размер самого маленького объекта, видимого невооруженным глазом, составляет примерно 1 миллиметр. Это означает, что при определенных условиях человек может увидеть амебу, инфузорию-туфельку и даже человеческую яйцеклетку.

14. Кварки, лептоны и антивещество...


В течение последнего века ученые добились больших успехов в понимании обширности пространства и микроскопических «строительных блоков», из которого оно состоит. Когда дело дошло до выяснения того, что является наименьшей наблюдаемой частицей во Вселенной, люди столкнулись с определенными трудностями. В какой-то момент они думали, что это атом. Затем ученые обнаружили протон, нейтрон и электрон.

Но на этом все не закончилось. Сегодня все знают, что когда сталкивать эти частицы друг с другом в таких местах, как Большой адронный коллайдер, их можно разбить на еще более мелке частицы, такие кварки, лептоны и даже антивещество. Проблема же заключается в том, что невозможно определить, что же самое маленькое, поскольку размер на квантовом уровне становится несущественным, равно как и не действуют все привычные правила физики (некоторые частицы не имеют массы, а другие даже имеют отрицательную массу).

15. Вибрирующие струны субатомных частиц


Учитывая то, что было сказано выше относительно того, что понятие размера не имеет значения на квантовом уровне, можно вспомнить теорию струн. Это немного спорная теория, предполагающая, что все субатомные частицы состоят из вибрирующих струн, которые взаимодействуют для создания таких вещей, как масса и энергия. Таким образом, поскольку эти струны технически не имеют физического размера, можно утверждать, что они в каком-то смысле «самые маленькие» объекты во Вселенной.

Нейтрино, невероятно крошечная частица Вселенной, удерживает пристальное внимание ученых уже без малого столетие. За исследования нейтрино вручили больше Нобелевских премий, чем за работы о каких-либо других частицах, а для его изучения строят огромные установки с бюджетом небольших государств. Александр Нозик, старший научный сотрудник Института ядерных исследований РАН, преподаватель МФТИ и участник эксперимента по поиску массы нейтрино «Троицк ню-масс», рассказывает, как его изучать, но главное - как вообще его поймать.

Загадка похищенной энергии

Историю изучения нейтрино можно читать как увлекательный детектив. Эта частица не раз испытывала дедуктивные способности ученых: не каждую из загадок удавалось решить сразу, а часть не раскрыта до сих пор. Начать хотя бы с истории открытия. Радиоактивные распады разного рода начали изучать еще в конце XIX века, и неудивительно, что в 1920-х годах ученые имели в своем арсенале приборы не только для регистрации самого распада, но и для измерения энергии вылетающих частиц, пусть и не особо точного по сегодняшним меркам. С увеличением точности приборов росла и радость ученых, и недоумение, связанное в том числе с бета-распадом, при котором из радиоактивного ядра вылетает электрон, а само ядро изменяет свой заряд. Такой распад называют двухчастичным, поскольку в нем образуются две частицы - новое ядро и электрон. Любой старшеклассник объяснит, что можно точно определить в таком распаде энергию и импульсы осколков, используя законы сохранения и зная массы этих осколков. Другими словами, энергия, например, электрона всегда будет одной и той же в любом распаде ядра определенного элемента. На практике же наблюдалась совсем другая картина. Энергия электронов не только не была фиксированной, но и размазывалась в непрерывный спектр до самого нуля, что ставило ученых в тупик. Такое может быть только в случае, если кто-то крадет энергию из бета-распада. Но красть-то ее вроде бы некому.

Со временем приборы становились все точнее, и вскоре возможность списать подобную аномалию на погрешность аппаратуры пропала. Так появилась загадка. В поисках ее разгадки ученые высказывали разнообразные, даже совершенно абсурдные по нынешним меркам предположения. Сам Нильс Бор, например, делал серьезное заявление, что законы сохранения не действуют в мире элементарных частиц. Спас положение Вольфганг Паули в 1930 году. Он не смог приехать на конференцию физиков в Тюбингене и, не имея возможности участвовать дистанционно, прислал письмо, которое попросил зачитать. Вот выдержки из него:

«Дорогие радиоактивные дамы и господа. Я прошу вас выслушать со вниманием в наиболее удобный момент посланца, доставившего это письмо. Он расскажет вам, что я нашел отличное средство для закона сохранения и правильной статистики. Оно заключается в возможности существования электрически нейтральных частиц… Непрерывность Β-спектра станет понятной, если предположить, что при Β-распаде вместе с каждым электроном испускается такой «нейтрон», причем сумма энергий «нейтрона» и электрона постоянна…»

В финале письма были следующие строки:

«Не рисковать - не победить. Тяжесть положения при рассмотрении непрерывного Β-спектра становится особенно яркой после слов проф. Дебая, сказанных мне с сожалением: «Ох, лучше не думать обо всем этом… как о новых налогах». Следовательно, необходимо серьезно обсудить каждый путь к спасению. Итак, уважаемый радиоактивный народ, подвергните это испытанию и судите».

Позже сам Паули высказывал опасения, что, хотя его идея и спасает физику микромира, новая частица так никогда и не будет открыта экспериментально. Говорят, он даже спорил со своими коллегами, что, если частица есть, обнаружить ее при их жизни не удастся. В последующие несколько лет Энрико Ферми создал теорию бета-распада с участием частицы, названной им нейтрино, которая блестящим образом согласовалась с экспериментом. После этого ни у кого не осталось сомнений в том, что гипотетическая частица существует на самом деле. В 1956 году, за два года до смерти Паули, нейтрино было экспериментально обнаружено в обратном бета-распаде группой Фредерика Райнеса и Клайда Коуэна (Райнес получил за это Нобелевскую премию).

Дело о пропавших солнечных нейтрино

Как только стало понятно, что нейтрино хоть и сложно, но все же можно зарегистрировать, ученые начали пытаться уловить нейтрино внеземного происхождения. Самый очевидный их источник - Солнце. В нем постоянно происходят ядерные реакции, и можно подсчитать, что через каждый квадратный сантиметр земной поверхности проходит около 90 миллиардов солнечных нейтрино в секунду.

На тот момент самым эффективным методом ловли солнечных нейтрино был радиохимический метод. Суть его такова: солнечное нейтрино прилетает на Землю, взаимодействует с ядром; получается, скажем, ядро 37Ar и электрон (именно такая реакция была использована в эксперименте Рэймонда Дэйвиса, за который ему впоследствии дали Нобелевскую премию). После этого, подсчитав количество атомов аргона, можно сказать, сколько нейтрино за время экспозиции взаимодействовало в объеме детектора. На практике, разумеется, все не так просто. Надо понимать, что требуется считать единичные атомы аргона в мишени весом в сотни тонн. Соотношение масс примерно такое же, как между массой муравья и массой Земли. Тут-то и обнаружилось, что похищено ⅔ солнечных нейтрино (измеренный поток оказался в три раза меньше предсказанного).

Разумеется, в первую очередь подозрение пало на само Солнце. Ведь судить о его внутренней жизни мы можем только по косвенным признакам. Неизвестно, как на нем рождаются нейтрино, и возможно даже, что все модели Солнца неправильные. Обсуждалось достаточно много различных гипотез, но в итоге ученые стали склоняться к мысли, что все-таки дело не в Солнце, а в хитрой природе самих нейтрино.

Небольшое историческое отступление: в период между экспериментальным открытием нейтрино и опытами по изучению солнечных нейтрино произошло еще несколько интересных открытий. Во-первых, были открыты антинейтрино и доказано, что нейтрино и антинейтрино по-разному участвуют во взаимодействиях. Причем все нейтрино во всех взаимодействиях всегда левые (проекция спина на направление движения отрицательна), а все антинейтрино - правые. Мало того что это свойство наблюдается среди всех элементарных частиц только у нейтрино, оно еще и косвенно указывает на то, что наша Вселенная в принципе не симметрична. Во-вторых, было обнаружено, что каждому заряженному лептону (электрону, мюону и тау-лептону) соответствует свой тип, или аромат, нейтрино. Причем нейтрино каждого типа взаимодействуют только со своим лептоном.

Вернемся к нашей солнечной проблеме. Еще в 50-х годах XX века было высказано предположение, что лептонный аромат (тип нейтрино) не обязан сохраняться. То есть если в одной реакции родилось электронное нейтрино, то по пути к другой реакции нейтрино может переодеться и добежать как мюонное. Этим можно было бы объяснить нехватку солнечных нейтрино в радиохимических экспериментах, чувствительных только к электронным нейтрино. Эта гипотеза была блестящим образом подтверждена при измерениях потока солнечных нейтрино в сцинтилляционных экспериментах с большой водной мишенью SNO и Kamiokande (за что недавно вручили еще одну Нобелевскую премию). В этих экспериментах изучается уже не обратный бета-распад, а реакция рассеяния нейтрино, которая может происходить не только с электронными, но и с мюонными нейтрино. Когда вместо потока электронных нейтрино стали измерять полный поток всех типов нейтрино, результаты прекрасно подтвердили переход нейтрино из одного типа в другой, или нейтринные осцилляции.

Покушение на Стандартную модель

Открытие осцилляций нейтрино, решив одну проблему, создало несколько новых. Суть в том, что еще со времен Паули нейтрино считались безмассовыми частицами подобно фотонам, и это всех устраивало. Попытки измерить массу нейтрино продолжались, но без особого энтузиазма. Осцилляции все изменили, поскольку для их существования масса, пусть и маленькая, обязательна. Обнаружение массы у нейтрино, разумеется, привело экспериментаторов в восторг, но озадачило теоретиков. Во-первых, массивные нейтрино не вписываются в Стандартную модель физики элементарных частиц, которую ученые строили еще с начала XX века. Во-вторых, та самая загадочная левосторонность нейтрино и правосторонность антинейтрино хорошо объясняется только опять-таки для безмассовых частиц. При наличии массы левые нейтрино должны с некоторой вероятностью переходить в правые, то есть в античастицы, нарушая, казалось бы, незыблемый закон сохранения лептонного числа, или вовсе превращаться в какие-то нейтрино, не участвующие во взаимодействии. Сегодня такие гипотетические частицы принято называть стерильными нейтрино.

Нейтринный детектор «Супер-Камиоканде» © Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo

Разумеется, экспериментальные поиски массы нейтрино тут же резко возобновились. Но сразу возник вопрос: как же измерить массу того, что никак не удается поймать? Ответ один: не ловить нейтрино вообще. На сегодняшний день наиболее активно разрабатываются два направления - прямой поиск массы нейтрино в бета-распаде и наблюдение безнейтринного двойного бета-распада. В первом случае идея очень проста. Ядро распадается с излучением электрона и нейтрино. Нейтрино поймать не удается, но поймать и измерить с очень большой точностью возможно электрон. Спектр электронов несет информацию и о массе нейтрино. Такой эксперимент - один из самых сложных в физике частиц, но при этом его безусловный плюс в том, что он основан на базовых принципах сохранения энергии и импульса и его результат мало от чего зависит. Сейчас самое лучшее ограничение на массу нейтрино составляет около 2 эВ. Это в 250 тысяч раз меньше, чем у электрона. То есть саму массу не нашли, а только ограничили верхней рамкой.

С двойным бета-распадом все сложнее. Если предположить, что нейтрино при перевороте спина превращается в антинейтрино (такую модель называют по имени итальянского физика Этторе Майорана), то возможен процесс, когда в ядре происходят одновременно два бета-распада, но нейтрино при этом не вылетают, а сокращаются. Вероятность такого процесса связана с массой нейтрино. Верхние границы в подобных экспериментах лучше - 0,2‒0,4 эВ, - но зависят от физической модели.

Проблема массивного нейтрино не решена до сих пор. Теория Хиггса не может объяснить настолько маленькие массы. Требуется ее существенное усложнение или привлечение каких-то более хитрых законов, по которым нейтрино взаимодействуют c остальным миром. Физикам, занимающимся исследованием нейтрино, часто задают вопрос: «А как исследование нейтрино может помочь среднестатистическому обывателю? Какую финансовую или другую выгоду можно извлечь из этой частицы?» Физики разводят руками. И они действительно этого не знают. Когда-то исследование полупроводниковых диодов относилось к чисто фундаментальной физике, без какого-либо практического применения. Разница в том, что технологии, которые разрабатываются для создания современных экспериментов по физике нейтрино, широко используются в промышленности уже сейчас, так что каждая вложенная в эту сферу копейка довольно быстро окупается. Сейчас в мире ставятся несколько экспериментов, масштаб которых сравним с масштабом Большого адронного коллайдера; эти эксперименты направлены исключительно на исследование свойств нейтрино. В каком из них удастся открыть новую страницу в физике, неизвестно, но открыта она будет совершенно точно.

На вопрос Какая самая маленькая частица во вселенной? Кварк, Нейтрино, Бозон Хиггса или Планковская черная дыра? заданный автором Европеоидный лучший ответ это Фундаментальные частицы все имеют нулевой размер (радиус равен нулю). По массе. Есть частицы с массой, равной нулю (фотон, глюон, гравитон). Из массивных наименьшая масса у нейтрино (меньше 0.28 эВ/с^2, точнее еще не измерили). Частота, время - не есть характеристики частиц. Можно говорить о времен жизни, но это разговор другой.

Ответ от Прострочить [гуру]
Моск зеробубуса.


Ответ от Mikhail Levin [гуру]
вообще-то понятия "размер" в микромире практически нет. Ну, для ядра еще можно говорить о каком-от аналоге размера, например, через вероятность попадания в него электронов из пучка, а для более мелких - нет.


Ответ от христосоваться [гуру]
"размер" элементарной частицы - характеристика частицы, отражающая распределение по пространству её массы или электрического заряда; обычно говорят о т. н. среднеквадратичном радиусе распределения электрического заряда (который одновременно характеризует и распределение массы)
Калибровочные бозоны и лептоны в пределах точности выполненных измерений не обнаруживают конечных "размеров". Это означает, что их "размеры" < 10^-16 см
В отличие от истинно элементарных частиц "размеры" адронов конечны. Их характерный среднеквадратичный радиус определяется радиусом конфайнмента (или удержания кварков) и по порядку величины равен 10^-13 см. При этом он, конечно, варьирует от адрона к адрону.


Ответ от Kirill Odding [гуру]
Кто-то из великих физиков говорил (часом не Нильс Бор?) "Если Вам удастся объяснить квантовую механику в наглядных терминах - идите и получайте Вашу Нобелевскую премию".


Ответ от SerШkod Поликанов Сергей [гуру]
Какая элементарная частица во вселенной самая маленькая?
Элементарные частицы создающие гравитационный эффект.
Ещё меньше?
Элементарные частицы приводящие в движение те что создают гравитационный эффект
но и они сами в этом участвуют.
Есть и ещё мельче элементарные частицы.
Их параметры даже не вписываются в вычисления ведь структуры и их физические параметры неизвестны.


Ответ от Миша никитин [активный]
КВАРК


Ответ от Матипати кипирофинович [активный]
ПЛАНКОВСКАЯ ЧЕРНАЯ ДЫРА


Ответ от Bro qwerty [новичек]
Кварки самые маленькие частицы в мире. Для вселенной нет понятия размер она безгранична. Если изобрести машину для уменьшения человека то можно будет уменьшаться бесконечно все меньше, меньше, меньше... Да Кварк самая мелкая "Частица" Но есть же нечто меньшее чем частица. Пространство. Не. Имеет. Размера.


Ответ от Антон Курочка [активный]
Протон Нейтрон 1*10^-15 1 фемтометр
Кварк-U Кварк-D Электрон 1*10^-18 1 аттометр
Кварк-S 4*10^-19 400 зептометров
Кварк-C 1*10^-19 100 зептометров
Кварк-B 3*10^-20 30 зептометров
Нейтрино высоких энергий 1,5*10^-20 15 зептометров
Преон 1*10^-21 1 зептометр
Кварк-T 1*10^-22 100 йоктометров
MeV Нейтрино 2*10^-23 20 йоктометров
Нейтрино 1*10^-24 1 йоктометр -(ооочень маленький размер!!!) -
Плонковская частица 1,6*10^-35 0,000 000 000 016 йоктометра
Квантовая пена Квантовая струна 1*10^-35 0,000 000 000 01 йоктометр
Это таблица размеров частиц. И здесь можно увидеть что самая маленькая частица Планковская частица, но по скольку она слишком мола, Нейтрино является самой маленькой частицой. Но для вселеной меньше только Планковская длина

Они появляются в разных формах и размерах, некоторые приходят в деструктивных дуэтах, то есть в итоге уничтожают друг друга, а у некоторых есть невероятные названия, такие как "нейтралино". Вот список мельчайших частиц, которые поражают даже самих физиков.

Частица Бога

Бозон Хиггса - это частица, которая настолько важна для науки, что она получила прозвище «частица Бога». Именно она, как полагают ученые, дает массу всем остальным частицам. Впервые о ней заговорили в 1964 году, когда физики задались вопросом о том, почему некоторые из частиц имеют большую массу, чем другие. Бозон Хиггса связан с полем Хиггса, своеобразной решеткой, которая заполняет собой вселенную. Поле и бозон считаются ответственными за получение другими частицами массы. Многие ученые полагают, что именно механизм Хиггса содержит в себе недостающие кусочки мозаики, чтобы полностью понять стандартную модель, которая описывает все известные частицы, однако связь между ними пока не доказана.

Кварки

Кварки - это восхитительно названные блоки протонов и нейтронов, которые никогда не бывают одни и всегда существуют только в группах. Судя про всему, сила, которая связывает кварки вместе, увеличивается с ростом дистанции, то есть чем сильнее кто-то будет пытаться отдалить один из кварков от группы, тем сильнее он будет притягиваться обратно. Таким образом, свободные кварки просто не существуют в природе. Всего существует шесть видов кварков, и, например, протоны и нейтроны состоят из нескольких кварков. В протоне их три - два одинакового вида, и один - другого, а в нейтроне - только два, оба разного вида.

Суперпартнеры

Эти частицы относятся к теории суперсимметрии, которая говорит о том, что для каждой известной человеку частицы имеется другая подобная частица, которая еще не была обнаружена. Например, суперпатнер электрона - это селектрон, суперпартнер кварка - скварк, а суперпартнер фотона - фотино. Почему же эти суперчастицы не наблюдаются во вселенной сейчас? Ученые считают, что они намного тяжелее, чем их партнеры, а большщий вес сокращает срок службы. Эти частицы начинают разрушаться, как только они появляются на свет. Создание частицы требует огромного количества энергии, например такого, которое было произведено Большим Взрывом. Возможно, ученые найдут способ воспроизвести суперчастицы, например, в Большом адронном коллайдере. Что касается большего размера и веса суперпартнеров, ученые полагают, что симметрия была нарушена в скрытом секторе вселенной, который не может быть видим или найден.

Нейтрино

Это легкие субатомные частицы, которые движутся со скоростью, близкой к скорости света. На самом деле, триллионы нейтрино движутся через ваше тело в каждый отдельно взятый момент времени, но при этом они практически никогда не взаимодействуют с обычной материей. Некоторые нейтрино приходят от Солнца, другие - от космических лучей, взаимодействующих с атмосферой.

Антиматерия

Все обычные частицы имеют партнера в антиматерии, идентичные частицы с противоположным зарядом. Когда материя и антиматерия встречаются друг с другом, они взаимоуничтожаются. Для протона такая частица - антипротон, а вот для электрона - позитрон.

Гравитоны

В квантовой механике все фундаментальные силы осуществляются частицами. Например, свет состоит из частиц с нулевой массой, называемых фотонами, они несут электромагнитную силу. Точно так же гравитоны являются теоретическими частицами, которые несут силу тяжести. Ученые до сих пор пытаются отыскать гравитоны, но сделать это очень сложно, так как данные частицы очень слабо взаимодействуют с материей. Однако ученые не оставляют попыток, так как надеются, что все же у них получится поймать гравитоны, чтобы более подробно их изучить - это может стать настоящим прорывом в квантовой механике, так как многие подобные частицы уже были изучены, но гравитон остается исключительно теоретическим. Как видите, физика может быть гораздо более интересной и захватывающей, чем вы себе можете представить. Весь мир наполнен разнообразными частицами, каждая из которых - это огромное поле для исследования и изучения, а также огромная база знаний обо всем, что окружает человека. И стоит только задуматься о том, сколько уже открыто частиц - и сколько людям еще предстоит открыть.

Ответ на непрекращающийся вопрос: какая самая маленькая частица во Вселенной эволюционировал вместе с человечеством.

Люди когда-то думали, что песчинки были строительными блоками того, что мы видим вокруг нас. Затем был обнаружен атом, и он считался неделимым, пока он не был расщеплен, чтобы выявить протоны, нейтроны и электроны внутри. Они тоже не оказались самыми маленькими частицами во Вселенной, так как ученые обнаружили, что протоны и нейтроны состоят из трех кварков каждый.

Пока ученые не смогли увидеть никаких доказательств того, что внутри кварков что-то есть и достигнут самый фундаментальный слой материи или самая маленькая частица во Вселенной.

И даже если кварки и электроны неделимы ученые не знают, являются ли они наименьшими битами материи в существовании или если Вселенная содержит объекты, которые являются еще более мелкими.

Самые мельчайшие частицы Вселенной

Они бывают разных вкусов и размеров, некоторые имеют удивительную связь, другие по существу испаряют друг друга, многие из них имеют фантастические названия: кварки состоящие из барионов и мезонов, нейтроны и протоны, нуклоны, гипероны, мезоны, барионы, нуклоны, фотоны и т.д.

Бозон Хиггса, настолько важная для науки частица, что ее называют «частицей Бога». Считается, что она определяет массу всем другим. Элемент был впервые теоретизирован в 1964 году, когда ученые задавались вопросом, почему некоторые частицы более массивны, чем другие.

Бозон Хиггса связан с так называемым полем Хиггса который, как полагают, заполняют Вселенную. Два элемента (квант поля Хиггса и бозон Хиггса), ответственны за то, чтобы дать другим массу. Названа в честь шотландского ученого Питера Хиггса. С помощью 14 марта 2013 г. официально объявлено о подтверждении существования Бозона Хиггса.

Многие ученые утверждают, что механизм Хиггса разрешил недостающую часть головоломки, чтобы завершить существующую «стандартную модель» физики, которая описывает известные частицы.

Бозон Хиггса принципиально определил массу всему, что существует во Вселенной.

Кварки

Кварки (в переводе бредовые) строительные блоки протонов и нейтронов. Они никогда не одиноки, существуя только в группах. По-видимому, сила, которая связывает кварки вместе, увеличивается с расстоянием, поэтому чем дальше, тем труднее их будет разнять. Поэтому свободные кварки никогда не существуют в природе.

Кварки фундаментальные частицы являются бесструктурными, точечными размером примерно 10 −16 см .

Например, протоны и нейтроны состоят из трех кварков, причем протоны содержат два одинаковых кварка, в то время как нейтроны имеют два разных.

Суперсимметричность

Известно, что фундаментальные «кирпичики» материи фермионы это кварки и лептоны, а хранители силы бозоны это фотоны, глюоны. Теория суперсимметрии говорит о том, что фермионы и бозоны могут превращаться друг в друга.

Предсказываемая теория утверждает, что для каждой известной нам частицы есть родственная, которую мы еще не обнаружили. Например, для электрона это селекрон, кварка — скварк, фотона –фотино, хиггса - хиггсино.

Почему мы не наблюдаем этой суперсимметрии во Вселенной сейчас? Ученые считают, что они намного тяжелее, чем их обычные родственные частицы и чем тяжелее, тем короче их срок службы. По сути, они начинают разрушаться, как только возникают. Создание суперсимметрии требует весьма большого количества энергии, которая только существовала вскоре после большого взрыва и возможно может быть создана в больших ускорителях как большой адронный коллайдер.

Что касается того, почему симметрия возникла, физики предполагают, что симметрия, возможно, была нарушена в каком-то скрытом секторе Вселенной, который мы не можем видеть или касаться, но можем чувствовать только гравитационно.

Нейтрино

Нейтрино легкие субатомные частицы, которые свистят везде с близкой скоростью света. На самом деле, триллионы нейтрино текут через ваше тело в любой момент, хотя они редко взаимодействуют с нормальной материей.

Некоторые происходят от солнца, в то время как другие от космических лучей, взаимодействующих с атмосферой Земли и астрономическими источниками, такими как взрывающиеся звезды на Млечном пути и другие далекие галактики.

Антивещество

Считается, что все нормальные частицы имеют антивещества с одинаковой массой, но противоположным зарядом. Когда материя и встречаются, они уничтожают друг друга. Например, частица антиматерии протона является антипротоном, в то время как партнер антиматерии электрона называется позитроном. Антивещество относится к самым дорогим веществам в мире которые смогли определить люди.

Гравитоны

В области квантовой механики все фундаментальные силы передаются частицами. Например, свет состоит из безмассовых частиц, называемых фотонами, которые несут электромагнитную силу. Точно также гравитон является теоретической частицей, которая несет в себе силу гравитации. Ученым еще предстоит обнаружить гравитоны, которые сложно найти, потому что они так слабо взаимодействуют с веществом.

Нити энергии

В экспериментах крошечные частицы, такие как кварки и электроны, действуют как одиночные точки материи без пространственного распределения. Но точечные объекты усложняют законы физики. Поскольку нельзя приблизиться бесконечно близко к точке, так как действующие силы, могут стать бесконечно большими.

Идея под названием теория суперструн может решить эту проблему. Теория утверждает, что все частицы, вместо того, чтобы быть точечными, на самом деле являются маленькими нитями энергии. Тоесть все объекты нашего мира состоят из вибрирующих нитей и мембран энергии. Ничто не может быть бесконечно близко к нити, потому что одна часть всегда будет немного ближе, чем другая. Эта «лазейка», похоже, решает некоторые из проблем бесконечности, делая идею привлекательной для физиков. Тем не менее, у ученых до сих пор нет экспериментальных доказательств того, что теория струн верна.

Другой способ решения точечной проблемы — сказать, что само пространство не является непрерывным и гладким, а на самом деле состоит из дискретных пикселей или зерен, иногда называемых пространственно-временной структурой. В этом случае две частицы не смогут бесконечно приближаться друг к другу, потому что они всегда должны быть разделены минимальным размером зерна пространства.

Точка черной дыры

Еще одним претендентом на звание самая маленькая частица во Вселенной является сингулярность (единственная точка) в центре черной дыры. Черные дыры образуются, когда вещество конденсируется в достаточно маленьком пространстве, которое захватывает гравитация, заставляя вещество втянуть вовнутрь, в конечном итоге конденсируясь в единую точку бесконечной плотности. По крайней мере по действующим законам физики.

Но большинство экспертов не считают черные дыры действительно бесконечно плотными. Они считают, что эта бесконечность является результатом внутреннего конфликта между двумя действующими теориями — общей теорией относительностью и квантовой механикой. Они предполагают, что когда теория квантовой гравитации может быть сформулирована, истинная природа черных дыр будет раскрыта.

Планковская длина

Нити энергии и даже самая маленькая частица во Вселенной может оказаться размером с «длину планка».

Длина планка составляет 1,6 х 10 -35 метров (число 16 перед которым 34 нуля и десятичная точка) - непонятно малый масштаб, который связан с различными аспектами физики.

Планковская длина – «естественная единица» измерения длины, которая была предложена немецким физиком Максом Планком.

Длина Планка слишком мала для любого инструмента, чтобы измерить, но помимо этого, считается, что она представляет собой теоретический предел кратчайшей измеримой длины. Согласно принципу неопределенности, ни один инструмент никогда не должен быть в состоянии измерить что-либо меньшее, потому что в этом диапазоне Вселенная вероятностная и неопределенная.

Эта шкала также считается разграничительной линией между общей теорией относительности и квантовой механикой.

Планковская длина соответствует расстоянию, где гравитационное поле настолько сильно, что оно может начать делать черные дыры из энергии поля.

Очевидно сейчас, самая маленькая частица во Вселенной примерно размером с длину планка: 1,6·10 −35 метров

Выводы

Со школьной скамьи было известно, что самая маленькая частица во Вселенной электрон имеет отрицательный заряд и очень маленькую массу, равную 9,109 х 10 — 31 кг, а классический радиус электрона составляет 2,82 х 10 -15 м.

Однако физики уже оперируют с самыми маленькими частицами во Вселенной планковского размера который равняется примерно 1,6 х 10 −35 метров.