Самая большая чёрная дыра в известной Вселенной. Вид гаргантюа с планеты миллер

Совсем недавно науке стало достоверно известно, что же такое черная дыра. Но едва ученые разобрались с этим феноменом Вселенной, на них свалился новый, куда более сложный и запутанный: сверхмассивная черная дыра, которую и черной-то не назовешь, а скорее ослепительно белой. Почему? А потому, что именно такое определение дали центру каждой галактики, который светится и сияет. Но стоит туда попасть, и кроме черноты, ничего не остается. Что же это за головоломка такая?

Памятка о черных дырах

Доподлинно известно, что простая черная дыра - это некогда светившая звезда. На определенном этапе существования ее стали непомерно увеличиваться, при этом радиус оставался прежним. Если раньше звезду "распирало", и она росла, то теперь силы, сосредоточенные в ее ядре, начали притягивать к себе все остальные составляющие. Ее края "заваливаются" на центр, образуя невероятной силы коллапс, который и становится черной дырой. Такие «бывшие звезды» уже не светят, а являются абсолютно внешне незаметными объектами Вселенной. Но они весьма ощутимы, так как поглощают буквально все, что попадает в их гравитационный радиус. Неизвестно, что кроется за таким горизонтом событий. Исходя из фактов, любое тело столь огромная гравитация буквально раздавит. Однако в последнее время не только фантасты, но и ученые придерживаются мысли о том, что это могут быть своеобразные космические тоннели для путешествий на большие расстояния.

Что же такое квазар

Подобными свойствами обладает сверхмассивная черная дыра, иными словами, ядро галактики, у которого есть сверхмощное гравитационное поле, существующее за счет своей массы (миллионы или миллиарды масс Солнца). Принцип формирования сверхмассивных черных дыр пока установить не удалось. Согласно одной версии, причиной такого коллапса служат слишком сжатые газовые облака, газ в которых предельно разряжен, а температура невероятно высока. Вторая версия - это приращение масс различных малых черных дыр, звезд и облаков к единому гравитационному центру.

Наша галактика

Сверхмассивная черная дыра в центре Млечного Пути не входит в разряд самых мощных. Дело в том, что сама галактика имеет спиралевидную структуру, что, в свою очередь, заставляет всех ее участников находиться в постоянном и достаточно быстром движении. Таким образом, гравитационные силы, которые могли бы быть сосредоточены исключительно в квазаре, как бы рассеиваются, и от края к ядру увеличиваются равномерно. Несложно догадаться, что дела в эллиптических или, скажем, неправильных галактиках, обстоят противоположным образом. На «окраинах» пространство крайне разряженное, планеты и звезды практически не движутся. А вот в самом квазаре жизнь буквально бьет ключом.

Параметры квазара Млечного Пути

Используя метод радиоинтерферометрии, исследователи смогли рассчитать массу сверхмассивной черной дыры, ее радиус и гравитационную силу. Как было отмечено выше, наш квазар тусклый, супермощным его назвать трудно, но даже сами астрономы не ожидали, что истинные результаты будут такими. Итак, Стрелец А* (так названо ядро) приравнивается к четырем миллионам солнечных масс. Более того, по очевидным данным, эта черная дыра даже не поглощает материю, а объекты, которые находятся в ее окружении, не нагреваются. Также был подмечен интересный факт: квазар буквально утопает в газовых облаках, материя которых крайне разряжена. Возможно, в настоящее время лишь начинается эволюция сверхмассивной черной дыры нашей галактики, и через миллиарды лет она станет настоящим гигантом, который будет притягивать не только планетарные системы, но и другие, более мелкие

Насколько малой ни была бы масса нашего квазара, более всего ученых поразил его радиус. Теоретически такое расстояние можно преодолеть за несколько лет на одном из современных космических кораблей. Размеры сверхмассивной черной дыры немного превышают среднее расстояние от Земли до Солнца, а именно составляют 1,2 астрономические единицы. Гравитационный радиус этого квазара в 10 раз меньше основного диаметра. При таких показателях, естественно, материя просто не сможет сингулировать до тех пор, пока непосредственно не пересечет горизонт событий.

Парадоксальные факты

Галактика относится к разряду молодых и новых звездных скоплений. Об этом свидетельствует не только ее возраст, параметры и положение на известной человеку карте космоса, но и мощность, которой обладает ее сверхмассивная черная дыра. Однако, как оказалось, «смешные» параметры могут иметь не только молодые Множество квазаров, которые обладают невероятной мощностью и гравитацией, удивляют своими свойствами:

  • Обычный воздух зачастую имеет большую плотность, чем сверхмассивные черные дыры.
  • Попадая на горизонт событий, тело не будет испытывать приливных сил. Дело в том, что центр сингулярности находится достаточно глубоко, и дабы достичь его, придется проделать долгий путь, даже не подозревая, что обратной дороги уже не будет.

Гиганты нашей Вселенной

Одним из самых объемных и старых объектов в космосе является сверхмассивная черная дыра в квазаре OJ 287. Это целая лацертида, расположенная в созвездии Рака, которая, к слову, очень плохо видна с Земли. В ее основе лежит двойная система черных дыр, следовательно, имеется два горизонта событий и две точки сингулярности. Больший объект имеет массу 18 миллиардов масс Солнца, практически как у небольшой полноценной галактики. Этот компаньон статичен, вращаются лишь объекты, которые попадают в его гравитационный радиус. Меньшая система весит 100 миллионов масс Солнца, а также имеет период обращения, который составляет 12 лет.

Опасное соседство

Галактики OJ 287 и Млечный Путь, как было установлено, являются соседями - расстояние между ними составляет примерно 3,5 миллиарда световых лет. Астрономы не исключают и той версии, что в ближайшем будущем эти два космических тела столкнутся, образовав сложную звездную структуру. По одной из версий, именно из-за сближения с подобным гравитационным гигантом движение планетарных систем в нашей галактике постоянно ускоряется, а звезды становятся горячее и активнее.

Сверхмассивные черные дыры на самом деле белые

В самом начале статьи был затронут весьма щекотливый вопрос: цвет, в котором перед нами постают самый мощные квазары, сложно назвать черным. Невооруженным глазом даже на самой простенькой фотографии любой галактики видно, что ее центр - это огромная белая точка. Почему же тогда мы считаем, что это сверхмассивная черная дыра? Фото, сделанные через телескопы, демонстрируют нам огромное скопление звезд, которые притягивает к себе ядро. Планеты и астероиды, которые вращаются рядом, из-за непосредственной близости отражают, тем самым преумножая весь присутствующий рядом свет. Так как квазары не затягивают с молниеносной скоростью все соседние объекты, а лишь удерживают их в своем гравитационном радиусе, они не пропадают, а начинают еще больше пылать, ведь их температура стремительно растет. Что же касается обычных черных дыр, которые существуют в открытом космосе, то их название полностью оправдано. Размеры относительно невелики, но при этом сила гравитации колоссальна. Они попросту «съедают» свет, не выпуская из своих берегов ни единого кванта.

Кинематограф и сверхмассивная черная дыра

Гаргантюа - этот термин человечество стало широко употреблять по отношению к черным дырам после того, как на экраны вышел фильм «Интерстеллар». Просматривая эту картину, сложно понять, почему выбрано именно это название и где связь. Но в первоначальном сценарии планировали создать три черных дыры, две из которых носили бы названия Гаргантюа и Пантагрюэль, взятые из сатирического романа После внесенных изменений осталась лишь одна «кроличья нора», для обозначения которой было выбрано первое наименование. Стоит заметить, что в фильме черная дыра изображена максимально реалистично. Так сказать, дизайном ее внешнего вида занимался ученый Кип Торн, который базировался на изученных свойствах данных космических тел.

Как мы узнали о черных дырах?

Если бы не теория относительности, которая была предложена Альбертом Эйнштейном в начале ХХ века, никто бы, наверное, даже не обратил внимания на эти загадочные объекты. Сверхмассивная черная дыра расценивалась бы как обычное скопление звезд в центре галактики, а рядовые, маленькие, вовсе бы осталась незамеченными. Но сегодня, благодаря теоретическим расчетам и наблюдениям, которые подтверждают их правильность, мы можем наблюдать такой феномен, как искривление пространства-времени. Современные ученые говорят, что найти «кроличью нору» не так уж и сложно. Вокруг такого объекта материя ведет себя неестественно, она не только сжимается, но порой и светится. Вокруг черной точки образуется яркий ореол, который виден в телескоп. Во многом природа черных дыр помогает нам постичь историю становления Вселенной. В их центре находится точка сингулярности, подобная той, из которой ранее развился весь окружающий нас мир.

Доподлинно неизвестно, что может случиться с человеком, который пересечет горизонт событий. Раздавит ли его гравитация, или же он окажется в совершенно ином месте? Единственное, что можно утверждать с полной уверенностью, - гаргантюа замедляет время, и в какой-то момент стрелка часов окончательно и бесповоротно останавливается.

Вид Гаргантюа с планеты Миллер

Когда в фильме «Рейнджер» приближается к планете Миллер, мы видим в небе Гаргантюа, которая занимает 10 градусов обзора (в 20 раз больше, чем Луна, если смотреть на нее с Земли!) и окружена ярким аккреционным диском (рис. 17.9). Как бы впечатляюще это ни выглядело, в фильме угловой размер Гаргантюа сильно уменьшен по сравнению с тем, каким он должен был бы быть на самом деле.

Рис. 17.9. Гаргантюа, частично скрытая планетой Миллер; на переднем плане – «Рейнджер», идущий на снижение (Кадр из «Интерстеллар», с разрешения «Уорнер Бразерс».)

Если планета Миллер, в согласии с Кип-версией, действительно находится достаточно близко к Гаргантюа, чтобы замедление времени на ней было столь велико, то планета должна находиться у самого подножия цилиндрической области искривленного пространства Гаргантюа (рис. 17.1). Тогда, весьма вероятно, если вы направите взгляд, так сказать, в сторону нижней части цилиндра, то увидите Гаргантюа, а если в сторону верхней, то увидите внешнюю Вселенную. Значит, Гаргантюа занимает примерно половину неба над планетой (180 градусов), а внешняя Вселенная – другую половину. Именно так велят законы теории относительности.

Кроме того, очевидно, что если планета Миллер находится на минимальном от Гаргантюа расстоянии, где она может оставаться в стабильном состоянии, не падая к дыре, то аккреционный диск должен располагаться снаружи орбиты планеты. Таким образом, на подлете к планете астронавты должны наблюдать огромный диск сверху, над собой, и огромную тень черной дыры внизу, под собой. Опять же таковы прогнозы теории относительности.

Если бы Крис последовал этим требованиям эйнштейновских законов, он испортил бы фильм. Будь эта сцена столь грандиозна, кульминация (когда Купер падает к Гаргантюа) поблекла бы на ее фоне. Поэтому Крис сознательно допустил художественную вольность, сделав Гаргантюа и ее диск «всего лишь» в 20 раз больше, чем Луна при взгляде с Земли.

Хоть я и приверженец научной точности в фантастике, но не могу винить Криса за это решение. Решай я, то сделал бы точно так же, и вы сказали бы мне за это спасибо.

Из книги Занимательно об астрономии автора Томилин Анатолий Николаевич

1. Генеалогия планеты А теперь давайте вернемся к основному вопросу. Вы, конечно, догадались, что речь пойдет о рождении Земли. Автор специально отложил его на потом, ибо из всего, с чем мы только что познакомились, вопрос о происхождении нашего мира имеет самую длинную и

Из книги Жизнь как она есть [Её зарождение и сущность] автора Крик Фрэнсис

Из книги Астрономия древнего Египта автора Куртик Геннадий Евсеевич

Планеты Наблюдения планет не играли существенной роли в Древнем Египте. Единственное свидетельство о подобных наблюдениях содержится в трудах Аристотеля (О небе, II, 12, 292а), где сообщается о получивших известность в Греции египетских наблюдениях соединений планет друг с

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Как движутся планеты На вопрос, как движутся планеты, можно ответить кратко: повинуясь закону тяготения. Ведь силы тяготения – единственные силы, приложенные к планетам.Так как масса планет много меньше массы Солнца, то силы взаимодействия между планетами не играют

Из книги Твиты о вселенной автора Чаун Маркус

46. Почему планеты круглые? Сила тяжести - универсальная сила притяжения между всеми массами, так что каждый фрагмент большого тела пытается притянуть к себе любой другой фрагмент.Если материал может течь, тело образует сферу. Эта форма гарантирует, что каждый

Из книги Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей автора Дмитриев Александр Станиславович

55 Почему звезды мерцают, а планеты – нет? Если посмотреть на ночное небо, выехав подальше от освещенных мест, – скажем, на даче или в походе, – то мы увидим тысячи и тысячи переливающихся звезд. Они то вспыхивают поярче, то тускнеют.Почему так происходит?Ответ на этот

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

Через гравитационную пращу к планете Миллер Звезды и небольшие черные дыры собираются вокруг гигантских черных дыр вроде Гаргантюа (подробнее об этом – в следующем параграфе). В Кип-версии Купер и его команда разузнали обо всех небольших черных дырах, вращающихся

Из книги автора

17. Планета Миллер Первая планета, на которую высаживаются Купер и его команда, – это Миллер. Ее наиболее впечатляющие особенности – сильное замедление времени, гигантские волны и мощнейшая приливная гравитация. Эти три особенности связаны между собой

Из книги автора

Орбита планеты По Кип-версии, планета Миллер расположена в области, помеченной на рис. 17.1 синим кольцом, очень близко к горизонту Гаргантюа (см. главу 6 и главу 7). Рис. 17.1. Искривленное пространство вблизи Гаргантюа, вид из балка, одно пространственное измерение

Из книги автора

Гигантские волны на планете Миллер Откуда могли появиться две гигантские – в 1,2 километра вышиной – волны, которые норовят захлестнуть «Рейнджер» на планете Миллер (рис. 17.5)? Рис. 17.5. Гигантская волна обрушивается на «Рейнджер» (Кадр из «Интерстеллар», с разрешения

Из книги автора

Прошлое планеты Миллер Интересно порассуждать о прошлом и будущем планеты Миллер. Попробуйте сделать это, призвав на помощь все свои познания в физике, а также информацию из книг и интернета. Предупреждаю, задача не из легких! Вот некоторые вопросы, над которыми

Из книги автора

Орбита планеты и отсутствие солнца Я определил подходящую для планеты Манн орбиту, руководствуясь двумя киноэпизодами.Во-первых, Дойл говорит, что путешествие к планете Манн займет месяцы. Отсюда вывод: когда «Эндюранс» прибывает к планете Манн, она должна

Из книги автора

Взрыв на орбите вокруг планеты Манн Такой подход к конструированию корабля приносит свои плоды, когда доктор Манн невольно инициирует сильный взрыв, который размыкает кольцо «Эндюранс», уничтожает два модуля и еще два повреждает (рис. 20.2). Рис. 20.2. Вверху: взрыв

Из книги автора

Приливная гравитация: «Эндюранс» улетает от планеты Манн В Кип-версии орбита планеты Манн сильно вытянута (см. главу 19). Когда «Эндюранс» прибывает к планете, она находится далеко от Гаргантюа, но движется в ее направлении. Взрыв «Эндюранс» (см. главу 20) происходит,

Из книги автора

Глава 17. Планета Миллер В этой главе я делаю много утверждений о планете Миллер: ее орбите, ее вращении (она всегда обращена одной и той же стороной к Гаргантюа, если не считать раскачивания), о приливных силах Гаргантюа, которые деформируют планету и заставляют ее

Из книги автора

Глава 17. Планета Миллер Если вы знакомы с математической записью ньютоновских законов тяготения, вас может заинтересовать их модификация, предложенная астрофизиками Богданом Пачинским и Полом Виита . В этой модификации гравитационное ускорение

Чёрной дырой называют область пространства-времени, гравитационное притяжение которой настолько велико, что покинуть её не может даже свет. Разросшиеся до гигантских размером чёрные дыры образуют ядра большинства галактик.

Сверхмассивная чёрная дыра - это чёрная дыра с массой около 105-1010 масс Солнца. По состоянию на 2014 год сверхмассивные чёрные дыры обнаружены в центре многих галактик, включая наш Млечный Путь.

Самая тяжёлая сверхмассивная чёрная дыра за пределами нашей галактики находится в галактике в гигантской эллиптической галактики NGC 4889 в созвездии Волосы Вероники. Её масса - около 21 млрд солнечных масс!

На этом снимке - галактика NGC 4889 находится в центре. Где-то там притаился тот самый гигант.

Общепринятой теории образования чёрных дыр такой массы ещё нет. Существует несколько гипотез, наиболее очевидной из которых является гипотеза, описывающая постепенное наращивание массы чёрной дыры путём гравитационного притяжения материи (обычно газа) из космического окружающего пространства. Трудность образования сверхмассивной чёрной дыры заключается в том, что достаточное для этого количество вещества должно быть сконцентрировано в относительно небольшом объёме.

Сверхмассивная чёрная дыра и её аккреционный диск в представлении художника.

Спиральная галактика NGC 4845 (тип Sa) в созвездии Дева, находящаяся на расстоянии 65 миллионов световых лет от Земли. В центре галактики находится сверхмассивная чёрная дыра с массой около 230 000 солнечных масс.

Космическая обсерватория Chandra (Chandra X-ray Observatory, NASA) не так давно предоставила доказательства о том, что многие сверхмассивные черные дыры вращаются с огромной скоростью. Измеренная скорость вращения одной из черных дыр - 3.5 трлн. миль/час - это примерно половина скорости света, а её невероятная гравитация тянет за собой окружающее пространство на много миллионов километров.

Спиральная галактика NGC 1097 в созвездии Печь. В центре галактики находится сверхмассивная черная дыра, которая в 100 миллионов раз тяжелее нашего Солнца. Она засасывает в себя любую материю в окру́ге.

Мощнейший квазар в галактике Маркарян 231 может получать энергию от двух расположенных в центре черных дыр, которые кружатся вокруг друг друга. Согласно подсчетам ученых, масса центральной черной дыры превышает солнечную массу в 150 миллионов раз, масса черной дыры-спутника больше солнечной в 4 миллиона раз. Этот динамический дуэт поглощает галактическую материю и вырабатывает огромное количество энергии, вызывающее сияние в центре галактики, способное затмить сияние миллиардов звезд.

Квазары - самые яркие источники во Вселенной, свет которых ярче чем сияние их галактик. Есть гипотеза, что квазары представляют собой ядра далеких галактик на стадии необычно высокой активности. Квазара в центре галактики Маркарян 231 - это самый близкий к нам подобный объект и проявляет себя как компактный радиоисточник. Ученые оценивают его возраст всего в миллион лет.

Гигантская эллиптическая галактика M60 и спиральная галактика NGC 4647 выглядят очень странной парой. Они обе находятся в созвездии Дева. Яркая M60, находящаяся на расстоянии около 54 миллионов световых лет от нас, имеет простую форму яйца, которая создаётся беспорядочно роящимися старыми звёздами. NGC 4647 (вверху справа), напротив, состоит из молодых голубых звёзд, газа и пыли, которые расположены в закрученных рукавах плоского вращающегося диска.

В центре М60 находится сверхмассивная черная дыра, имеющая 4,5 млрд солнечных масс.

Галактика 4C+29.30, расположенная на расстоянии 850 миллионов световых лет от Земли. В центре находится сверхмассивная чёрная дыра. Ёе масса в 100 миллионов раз больше массы нашего Солнца.

Астрономы долгое время искали подтверждение того, что Стрелец А - наша сверхмассивная черная дыра в центре Млечного пути, является источником струи плазмы. Наконец, они нашли его, - об этом говорят новые результаты, полученные рентгеновской обсерваторией Chandra (Чандра) и радиотелескопом VLA. Эта струя или джет образуется за счет поглощения вещества сверхмассивной черной дырой и ее существование давно предсказывалось теоретиками.

Используя самые качественные рентгеновские снимки, астрономы нашли первый очевидный факт того, что массивные черные дыры были схожи в Ранней Вселенной. Исследования и наблюдения отдаленных галактик показали, что они все обладают схожими супермассивными черными дырами. В Ранней Вселенной было найдено по меньшей мере 30 миллионов супермассивных схожих черных дыр. Это в 10 000 раз больше, чем предполагалось ранее.

На рисунке художника изображена растущая супермассивная черная дыра.

Спиральная галактика NGC 4945 с перемычкой (SBc) в созвездии Центавр. Она достаточно похожа на нашу Галактику, однако рентгеновские наблюдения показывают наличие ядра, вероятно, содержащего активную сверхмассивную чёрную дыру.

Скопление PKS 0745-19. Черная дыра, находящаяся в центре, является одной из 18 крупнейших известных черных дыр во Вселенной.

Мощный поток частиц из сверхмассивной черной дыры, ударивший по расположенной рядом галактике. Астрономы наблюдали столкновения галактик и раньше, но такой «космический выстрел» зафиксирован впервые. «Инцидент» произошел в звездной системе, расположенной на расстоянии 1,4 млрд. световых лет от Земли, где в настоящее время идет процесс слияния двух галактик. «Черная дыра» большей из двух галактик, которую астрономы сравнивают со «Звездой смерти» из киноэпопеи «Звездные войны», выбросила мощный поток заряженных частиц, который угодил прямо в галактику, находящуюся по соседству.

Найдена самая молодая чёрная дыра. Прародительницей новичка стала сверхновая, вспыхнувшая всего 31 год назад.

Художественное изображение черной дыры, поглощающей космическое пространство. Со времени теоретического предсказания чёрных дыр оставался открытым вопрос об их существовании, так как наличие решения типа «чёрная дыра» ещё не гарантирует, что существуют механизмы образования подобных объектов во Вселенной.

Вспышки на черной дыре в спиральной галактике M83 (известна также под названием Южная Вертушка), полученные с помощью космической рентгеновской обсерватории НАСА «Чандра». Южная Вертушка находится на расстоянии приблизительно 15 миллионов световых лет от нас.

Спиральная галактика NGC 4639 с перемычкой в созвездии Дева. NGC 4639 скрывает массивную черную дыру, которая поглощает космический газ и пыль.

Галактика M 77 в созвездии Кит. В центре неё - сверхмассивная черная дыра.

Художники изобразили черную дыру нашей Галактики – Стрелец A*. Это объект огромной массы. По анализу элементов орбит вначале было определено, что вес объекта составляет 2.6 млн солнечных масс, причем эта масса заключена в объёме не более 17 световых часов (120 а. e.) в диаметре.

Заглянуть в жерло чёрной дыры. Получить уникальное изображение жерла черной дыры и редких явлений в ее окрестностях удалось астрономам японского аэрокосмического агентства ДЖАКСА с помощью инфракрасной космической лаборатории NASA WISE. Объектом наблюдения WISE стала черная дыра в 6 раз превышающая массу солнца и значащаяся в каталогах под названием GX 339-4. Рядом с GX 339-4, находящейся на расстоянии более 20 тыс. световых лет от Земли, обращается звезда, вещество которой затягивается в черную дыру под воздействием ее чудовищного гравитационного поля, которое в 30 тыс. раз сильнее, чем на поверхности нашей планеты. При этом часть данного вещества выбрасывается от черной дыры в обратном направлении, образуя струи частиц, движущихся на околосветовых скоростях.

Галактика NGC 3081 в созвездии Гидра. Находится на расстоянии около 86 миллионов световых лет от Солнечной системы. Как считают ученые, в центре NGC 3081 находится сверхмассивная чёрная дыра.

Спит и видит сны. Почти десять лет назад космическая рентгеновская обсерватория НАСА «Чандра» зафиксировала признаки того, что, по-видимому, является черной дырой, которая поглощает газ прямо в центре ближайшей галактики Скульптор. И вот в 2013 году космический телескоп НАСА NuSTAR, который регистрирует жесткое рентгеновское излучение, бросает беглый взгляд в том же направлении и обнаруживает мирно спящую черную дыру (за последние 10 лет перешла в неактивное состояние).

Масса спящей черной дыры примерно в 5 миллионов раз больше массы нашего Солнца. Черная дыра находится в центре галактики Скульптор, известной также как NGC 253.

Плазма, выбрасываемая сверхмассивными черными дырами в центрах галактик может переносить огромное количество энергии на гигантские расстояния. Область 3C353 в свете рентгеновских лучей телескопов Чандра и Very Large Array окружена плазмой, выброшенной одной из черных дыр. На фоне гигантских «перьев» излучения галактики выглядят крошечными точками в центре.

Так по мнению художника может выглядеть сверхмассивная черная дыра с массой от нескольких миллионов до миллиардов раз больше массы нашего Солнца. Трудность образования сверхмассивной чёрной дыры заключается в том, что достаточное для этого количество вещества должно быть сконцентрировано в относительно небольшом объёме.

Чёрная дыра возникает в результате коллапса сверхмассивной звезды, в ядре которой заканчивается «топливо» для ядерной реакции. По мере сжатия температура ядра повышается, а фотоны с энергией более 511 кэВ, сталкиваясь, образуют электрон-позитронные пары, что приводит к катастрофическому снижению давления и дальнейшему коллапсу звезды под воздействием собственной гравитации.

Астрофизик Этан Сигел (Ethan Siegel) опубликовал статью «Крупнейшая чёрная дыра в известной Вселенной» , в которой собрал информацию о массе чёрных дыр в разных галактиках. Просто интересно: где же находится самая массивная из них?

Поскольку наиболее плотные скопления звёзд - в центре галактик, то сейчас практически у каждой галактики в центре находится массивная чёрная дыра, образованная после слияния множества других. Например, в центре Млечного пути есть чёрная дыра массой примерно 0,1% нашей галактики, то есть в 4 млн раз больше массы Солнца.

Определить наличие чёрной дыры очень легко, изучив траекторию движения звёзд, на которые воздействует гравитация невидимого тела.

Но Млечный путь - относительно маленькая галактика, которая никак не может иметь у себя самую большую чёрную дыру. Например, недалеко от нас в скоплении Девы находится гигантская галактика Messier 87 - она примерно в 200 раз больше нашей.

Так вот, из центра этой галактики вырывается поток материи длиной около 5000 световых лет (на фото). Это сумасшедшая аномалия, пишет Этан Сигел, но выглядит очень красиво.

Учёные считают, что объяснением такого «извержения» из центра галактики может быть только чёрная дыра. Расчёт показывает, что масса этой чёрной дыры где-то в 1500 раз больше, чем масса чёрной дыры в Млечном пути, то есть примерно 6,6 млрд масс Солнца.

Но где же во Вселенной самая большая чёрная дыра? Если исходить из расчёта, что в центре почти каждой галактики имеется такой объект с массой 0,1% от массы галактики, то нужно найти самую массивную галактику. Учёные могут дать ответ и на этот вопрос.

Самая массивная из известных нам - галактика IC 1101 в центре скопления Abell 2029, который находится от Млечного пути в 20 раз дальше, чем скопление Девы.

В IC 1101 расстояние от центра до самого дальнего края - около 2 млн световых лет. Её размер вдвое больше, чем расстояние от Млечного пути до ближайшей к нам галактики Андромеды. Масса почти равняется массе всего скопления Девы!

Если в центре IC 1101 есть чёрная дыра (а она должна там быть), то она может быть самой массивной в известной нам Вселенной.

Этан Сигел говорит, что может и ошибиться. Причина - в уникальной галактике NGC 1277. Это не слишком большая галактика, чуть меньше нашей. Но анализ её вращения показал невероятный результат: чёрная дыра в центре составляет 17 млрд солнечных масс, а это аж 17% общей массы галактики. Это рекорд по соотношению массы чёрной дыры к массе галактики.

Есть и ещё один кандидат на роль самой большой чёрной дыры в известной Вселенной. Он изображён на следующей фотографии.

Странный объект OJ 287 называется блазар . Блазары - особый класс внегалактических объектов, разновидность квазаров. Они отличаются очень мощным излучением, которое в OJ 287 меняется с циклом 11-12 лет (с двойным пиком).

По мнению астрофизиков, OJ 287 включает в себя сверхмассивную центральную чёрную дыру, по орбите которой вращается ещё одна чёрная дыра меньшего размера. Центральная чёрная дыра в 18 млрд масс Солнца - самая большая из известных на сегодняшний день.

Эта парочка чёрных дыр станет одним из самых лучших экспериментов для проверки общей теории относительности, а именно - деформации пространства-времени, описанной в ОТО.

Из-за релятивистских эффектов перигелий чёрной дыры, то есть ближайшая к центровой чёрной дыре точка орбиты, должен смещаться на 39° за один оборот! Для сравнения, перигелий Меркурия сместился всего на 43 арксекунды за столетие.

Постараюсь ответить на несколько вопросов, возникающих по фильму у зрителей.

1) Почему черная дыра Гаргантюа в фильме выглядит именно так?

Фильм Интерстеллар - это первый художественный фильм в истории кино, где было применена визуализация черной дыры на основе физико-математической модели. Моделирование осуществлялось командой специалистов из 30 человек (отделом визуальных эффектов Павла Франклина) в сотрудничестве с Кипом Торном - физиком-теоретиком с мировым именем, известного своими работами в теории гравитации, астрофизики и квантовой теории измерений. На один кадр тратилось около 100 часов, а всего на модель ушло около 800 терабайт данных.
Торн создал не только математическую модель, но и написал специализированное программное обеспечение (CGI), позволившее построить компьютерную модель визуализации.

Вот что получилось у Торна:

Конечно, справедливым будет задать вопрос: является ли моделирование Торна первым в истории науки? И является ли изображение, полученное Торном, чем-то ранее не встречавшимся в научной литературе? Разумеется, нет.
Жан Пьер Люмине из Обсерватории Париж-Мюдон, отделения Релятивистской Астрофизики и Космологии, также приобревший всемирную известность своими трудами из области черных дыр и космологии, - один из первых ученых, кто получил путем компьютерного моделирования изображение черной дыры. В 1987-м году выходит его книга «Черные дыры: популярное введение» где он пишет:

«Первые компьютерные картинки черной дыры, окруженной аккреционным диском, были получены мной (Luminet, J.-P. (1979): Astron. Astrophys.). Более тонкие расчеты проведены Марком (Marck, J.-A. (1993): Class. Quantum Grav) как для метрики Шварцшильда, так и для случая вращающейся черной дыры. Правдоподобные изображения - то есть рассчитанные с учетом кривизны пространства, красного смещения и физических свойств диска могут быть получены для произвольной точки, даже находящейся внутри горизонта событий. Был даже создан фильм, показывающий, как меняются эти искажения при движении по времениподобной траектории вокруг черной дыры (Delesalle, Lachieze-Rey and Luminet, 1993). Рисунок - это один из его кадров для случая движения по навесной параболической траектории»

Объяснение, почему изображение получается именно таким:

"Из-за кривизны пространства-времени в окрестности черной дыры изображение системы существенно отличается от эллипсов, которые мы бы видели, если б заменили черную дыру обычным маломассивным небесным телом. Излучение верхней стороны диска образует прямое изображение, причем из-за сильной дисторсии мы видим весь диск (черная дыра не закрывает от нас находящиеся за ней части диска). Нижняя часть диска также видима из-за существенного искривления световых лучей".

Изображение Люмине на удивление напоминает результат Торна, полученное им более чем через 30 лет после работ француза!

Почему же в других многочисленных визуализациях: как в статьях, так и научно-популярных фильмах, черную дыру часто можно увидеть совсем не такой? Ответ прост: компьютерное «рисование» черной дыры на основе математической модели - весьма сложный и трудоемкий процесс, который часто не вписывается в скромные бюджеты, поэтому авторы чаще всего обходятся работой дизайнера, а не физика.

2) Почему аккреционный диск Гаргантюа не такой эффектный, какой можно увидеть на многочисленных картинках и научно-популярных фильмах? Почему нельзя было показать черную дыру более яркой и внушительной?

Этот вопрос я объединю со следующим:

3) Известно, что аккреционный диск черной дыры является источником очень интенсивной радиации. Космонавты бы просто погибли, если бы приблизись к черной дыре.

И это действительно так. Черные дыры - это двигатели самых ярких, самых высокоэнергетичных источников излучения во Вселенной. По современным представлениям, сердцем квазаров, которые светят порой ярче, чем сотни галактик, всех вместе взятых, является черная дыра. Своей гравитацией она притягивает огромные массы вещества, заставляя его сжиматься в небольшой области под невообразимо высоким давлением. Это вещество нагревается, в нем текут ядерные реакции с испусканием мощнейшего рентгеновского и гамма излучения.
Вот как часто рисуют классический аккреционный диск черной дыры:

Если бы Гаргантюа была такой, то такой аккреционный диск убил бы своим излучением астронавтов. Аккреция у черной дыры Торна не такая плотная и массивная, по его модели температура диска не выше, чем у поверхности Солнца. Во многом это благодаря тому, что Гаргантюа - сверхмассивная черная дыра, массой не менее 100 миллионов масс солнца, с радиусом в одну астрономическую единицу.
Это не просто сверхмассивная, а ультрамассивная черная дыра. Даже черная дыра в центре Млечного Пути обладает, по разным оценкам, массой 4-4.5 млн. солнечных масс.
Хотя Гаргантюа - далеко не рекордсмен. Например, дыра в галактике NGC 1277 обладает массой 17 миллиардов солнц.
Идея представить себе такой эксперимент, в котором люди исследуют черную дыру, беспокоила Торна с 80-х годов. Уже в своей книге «Черные дыры и складки времени. Дерзкое наследие Эйнштейна», изданной в 1990-м году, Торн рассматривает гипотетическую модель межзвездного путешествия, в котором исследователи изучают черные дыры, желая как можно ближе подобраться к горизонту событий, чтобы лучше понять его свойства.
Исследователи начинают с небольшой черной дыры. Она их совершенно не устраивает потому, что создаваемые ею приливные силы слишком велики и опасны для жизни. Они сменяют объект изучения на более массивную черную дыру. Но и она их не удовлетворяет. Наконец, они направляются к гигантской Гаргантюа.
Гаргантюа находится вблизи квазара 3C273 - что позволяет сравнить свойства двух дыр.
Наблюдая за ними, исследователей задаются вопросом:

"Разница между Гаргантюа и 3C273 кажется удивительной: почему Гарнатюа, в его тысячу раз большими массой и размером, не обладает таким круглым бубликом газа и гигантскими струями квазара?"

Аккреционный диск Гаргантюа относительно холодный, не массивный, он не излучает столько энергии, как это происходит в квазаре. Почему?

"После телескопических исследований Брет находит ответ: раз в несколько месяцев звезда на орбите центральной дыры 3C273 подходит близко к горизонту и разрывается приливными силами черной дыры. Остатки звезды, массой примерной 1 солнечную, разбрызгиваются в окрестностях черной дыры. Постепенно внутренне трение загоняет разбрызгивающийся газ внутрь бублика. Этот свежий газ компенсирует газ, которым бублик постоянно снабжает дыру и струи. Таким образом бублик и струи поддерживают свои запасы газа и продолжают ярко светить.
Брет объясняет, что звезды могут близко подойти и к Гаргантюа. Но поскольку Гаргантюа намного больше 3C273, его приливные силы над горизонтом событий слишком слабы, чтобы разорвать звезду. Гаргантюа проглатывает звезды целиком, не разбрызгивая их внутренности в окружающий бублик. А без бублика Гаргантюа не может создать струи и другие особенности квазара.»

Чтобы вокруг черной дыры существовал массивный излучающий диск, должен быть строительный материал, из чего он может образоваться. В квазаре - это плотные газовые облака, очень близкие к черной дыре звезды. Вот классическая модель образования аккреционного диска:

В Интерстеллар видно, что массивному аккреционному диску там просто не из чего возникнуть. Нет ни плотных облаков, ни близких звезд в системе. Если что-то и было, то все это давно съедено.
Единственное, чем довольствуется Гаргантюа - это низкоплотные облака межвездного газа, создающие слабый, «низкотемпературный» аккреционный диск, не излучающий так интенсивно, как классические диски в квазарах или двойных системах. Поэтому излучение диска Гаргантюа не убьет астронавтов.

Торн пишет в The Science of Interstellar:

"Типичный аккреционный диск имеет очень интенсивное ренгтеновское, гамма и радиоизлучение. Настолько сильное, что поджарит любого астронавта, который вздумает оказаться рядом. Диск Гаргантюа, показанный в фильме - чрезвычайно слабый диск. "Слабый" - , разумеется, не по человеческим меркам, а по стандартам типичных квазаров. Вместо того, чтобы быть нагретым до сотен миллионов градусов, как нагреваются квазарные аккреционные диски, диск Гаргантюа нагрет всего лишь на несколько тысяч градусов, примерно как поверхность Солнца. Он излучает много света, но почти не излучает рентгеновские и гамма-лучи. Такие диски могут существовать на поздних стадиях эволюции черных дыр. Поэтому диск Гаргантюа довольно отличается от картины, которую вы можете часто видеть на различных популярных ресурсах по астрофизике."

Кип Торн единственный, кто высказал существования холодных аккреционных дисков вокруг черных дыр? Разумеется, нет.

В научной литературе холодные аккреционные диски черных дыр давно исследуются:
Согласно некоторым данным, сверхмассивная черная дыра в центре Млечного Пути Стрелец А* (Sgr A*) обладает как раз таки холодным аккреционным диском:

Вокруг нашей центральной черной дыры может существовать неактивный холодный аккреционный диск , оставшийся (из-за низкой вязкости) от "бурной молодости" Sgr A*, когда темп аккреции был высок. Теперь этот диск "засасывает" горячий газ, не давая ему падать в черную дыру: газ оседает в диске на относительно больших расстояниях от черной дыры.

(с) Close stars and an inactive accretion disc in Sgr A∗: eclipses and flares
Sergei Nayakshin1 and Rashid Sunyaev. // 1. Max-Planck-Institut fur Astrophysik, Karl-Schwarzschild-Str. Garching, Germany 2. Space Research Institute, Moscow, Russi

Или Лебедь X-1:

Выполнен спектральный и временной анализ большого числа наблюдений обсерваторией RXTE аккрецирующих черных дыр Лебедь X-1, GX339-4 и GS1354-644 в низком спектральном состоянии в течение 1996-1998 гг. Для всех трех источников обнаружена корреляция между характерными частотами хаотической переменности и спектральными параметрами - наклоном спектра комптонизированного излучения и относительной амплитудой отраженной компоненты. Связь между амплитудой отраженной компоненты и наклоном Комптонизационного спектра показывает, что отражающая среда (холодный аккреционный диск ) является основным поставщиком мягких фотонов в область комптонизации.

(с) Report at SPIE organization Conference "Astronomical Telescopes and Instrumentation", 21-31 March 2000, Munich, Germany

Interaction Between Stars and an Inactive Accretion Disc in a Galactic Core // Vladimır Karas . Astronomical Institute, Academy of Sciences, Prague, Czech Republic and

(с) Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic // Ladislav Subr . Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

"Спокойные" черные дыры похожи на дыру в Туманности Андромеды - одну из первых обнаруженных сверхмассивных черных дыр. Ее масса - около 140 миллионов солнечных масс. Но нашли ее не по сильному излучению, а по характерному движению звезд вокруг этой области. Интенсивным “квазарным” излучением ядра таких галакктих не обладают. И астрофизики пришли к выводу, что на эту черную дыру просто не падает вещество. Такая ситуация характерная для “спокойных” галактик, наподобие Туманности Андромеды и Млечного Пути.

Галактики с активными черными дырами носят название активных, или сейфертовских галактик. К числу сейфертовских галактик относят примерно 1% от всех наблюдаемых спиральных галактик.

Про то, как нашли сверхмассивную черную дыру в Туманности Андромеды, хорошо показано в научно-популярном фильме BBC "Сверхмассивные черные дыры".

4) Черные дыры, как известно, обладают смертоносными приливными силами. Разве они не разорвут как астронавтов, так и планету Миллера, которая в фильме находится слишком близко к горизонту событий?

Даже лаконичная Википедия пишет про одно важное свойство сверхмассивной черной дыры:

«Приливные силы около горизонта событий значительно слабее из-за того, что центральная сингулярность расположена так далеко от горизонта, что гипотетический космонавт, путешествующий к центру чёрной дыры, не почувствует воздействия экстремальных приливных сил до тех пор, пока не погрузится в неё очень глубоко.»

С этим согласны любые научные и популярные источники, где описываются свойства сверхмассивных черных дыр.

Расположение точки, в которой приливные силы достигают такой величины, что разрушают попавший туда объект, зависит от размера чёрной дыры. Для сверхмассивных чёрных дыр, как, например, расположенных в центре Галактики, эта точка лежит в пределах их горизонта событий, поэтому гипотетический космонавт может пересечь их горизонт событий, не замечая никаких деформаций, но после пересечения горизонта событий его падение к центру чёрной дыры уже неизбежно. Для малых чёрных дыр, у которых радиус Шварцшильда гораздо ближе к сингулярности, приливные силы убьют космонавта ещё до достижения им горизонта событий

(с) Schwarzschild black holes // General relativity: an introduction for physicists. — Cambridge University Press, 2006. — P. 265. — ISBN 0-521-82951-8.

Разумеется, масса Гаргантюа была выбрана так, чтобы не разорвать приливами астронавтов.
Стоит заметить, что у Торна Гаргантюа 1990-го года несколько массивнее, чем в Интерстеллар:

«Расчеты показали, что чем больше дыра, тем меньшая тяга требуется ракете для удержания ее на окружности в 1.0001 горизонта событий. Для болезненной, но терпимой тяги в 10 земных g масса дыры должна быть в 15 триллионов солнечных масс. Самая близкая из таких дыр называется Гаргантюа, находится она на расстоянии 100000 световых лет от нашей галактики и в 100 миллионах световых лет от кластера галактик Дева, вокруг которого вращается Млечный Путь. Фактически она находится вблизи квазара 3C273, в 2 миллиардах световых лет от Млечного Пути...
Выйдя на орбиту Гаргантюа и проведя обычные измерения, вы убеждаетесь, что действительно его масса равна 15 триллионам солнечных масс и что вращается он очень медленно. Из этих данных вы вычисляете, что длина окружности его горизонта составляет 29 световых лет. Наконец, рассчитывает, что это дыра, окрестность которой вы можете исследовать, испытывая допустимые приливные силы и ускорение!"

В книге «The Science of Interstellar» 2014-го года, где Кип Торн описывает научные аспекты работы над фильмом, он приводит уже цифру 100 миллионов масс солнца - но замечая, что это минимальная масса, которая может быть у «комфортной» в отношении приливных сил черной дыры.

5) Как может существовать планета Миллера так близко от черной дыры? Не разорвет ли ее приливными силами?

Астроном Фил Плейнт, известный под кличкой «Плохой Астроном» за свой безудержный скептицизм, просто не смог пройти мимо Интерстеллар. К тому же до этого он злобно разрушал своим сверлящим скепсисом многие нашумевшие фильмы, например «Гравитацию».

«Я действительно с нетерпением ждал Интерстеллар.. Но то, что я увидел, - было ужасно. Это полный провал. Мне все очень, очень не понравилось»
- пишет он в своей статье от 6-го ноября.
Фил говорит, что относительно научной части фильм является полнейшей туфтой. Что даже в гипотетических рамках не может соответствовать современным научным представлениям. Особенно он проехался по планете Миллера. По его словам, планета может устойчиво вращаться вокруг такой черной дыры, но ее орбита должна быть как минимум в три раза больше размера самой Гаргантюа. Часы будут идти медленнее, чем на Земле, но всего на 20 процентов. Устойчивость планеты, близкой к черной дыре, как показано в фильме - это невозможная выдумка. К тому же ее совершенно разорвут на части приливные силы черной дыры.

Но 9-го ноября Плейнт появляется с новой статьей. Он ее называет Follow-Up: Interstellar Mea Culpa . Неримеримый научный критик решил покаяться.

«Снова я напортачил. Но независимо от величины своих ошибок, я всегда стараюсь признавать их. В конце-концов, сама наука заставляет нас признавать свои ошибки и учиться на них!»

Фил Плейнт признал, что допустил ошибки в своих соображениях и пришел к неверным выводам:

«В своем обзоре я говорил о планете Миллера, вращавшейся близко к черной дыре. Час, проведенный на планете равен семи земным годам. Моя претензия состояла в том, что при таком замедлении времени стабильная орбита планеты была бы невозможной.
И это правда... для невращающейся черной дыры. Моя ошибка состояла в том. что я не использовал правильные уравнения для черных дыр, которая быстро вращалась! Это сильно меняет картину пространства-времени возле черной дыры. Сейчас я понимаю, устойчивая орбита у данной планеты вокруг черной дыры вполне может существовать, причем настолько близко к горизонту событий, что указанное в фильме замедление времени возможно. В общем, я был не прав.
Я утверждал также в своем первоначальном анализе, что гравитационные приливы разорвут эту планету на части. Я консультировался с парой астрофизиков, которые также сказали, что приливы Гаргантюа, вероятно, должны уничтожить планету, но математически это пока что не подтверждено. Они до сих пор работают над решением этой задачи - и как только она будет решена, я опубликую решение. Я сам не могу сказать, был ли я прав, или нет в своем анализе, - и даже если я был прав, мои соображения по-прежнему касались только невращающейся черной дыры, так что они не являются справедливыми для этого случая.
Чтобы решить такую задачу, нужно обсудить множество математических проблем. Но я не знаю точно, насколько именно далеко была планета Миллера от Гаргантюа, и поэтому очень трудно сказать, разрушили бы ее приливы, или нет. Книгу физика и исполнительного продюсера фильма Кипа Торна «The Science of Interstellar» я еще не читал - думаю, она прольет свет на эту проблему.
Тем не менее, я ошибался насчет стабильности орбиты - и я сейчас считаю должным отменить эту мою претензию к фильму.
Итак, подведу итог: физическая картина вблизи черной дыры, продемонстрированная в фильме, является на самом деле соответствующей науке. Я сделал ошибку, за которую я приношу свои извинения.

Ikjyot Singh Kohli, физик-теоретик из Йорского университета, на своей странице привел решения уравнений, доказывая, что существование планеты Миллера вполне возможно.
Он нашел решение, при котором планета будет существовать в продемонстрированных в фильме условиях. Но также обсудил и проблему приливных сил, которые должны якобы разорвать планету. Его решение показывает, что приливные силы слишком слабы, чтобы ее разорвать.
Он даже обосновал наличие гигантских волн на поверхности планеты.

Соображения Сингха Коли с примерами уравнений тут:

Так показывает нахождение планеты Миллера Торн в своей книге:

Есть точки, в которых орбита будет не устойчива. Но Торн нашел также и устойчивую орбиту:

Приливные силы не разрывают планету, но деформируют ее:

Если планета вращается вокруг источника приливных сил, то они будут постоянно менять свое направление, по-разному деформируя ее в разных точках орбиты. В одном положении планета будет сплющена с востока на запад и вытянута с севера на юг. В другой точке орбиты - сдавлена с севера на юг и растянута с востока на запад. Поскольку гравитация Гаргантюа весьма велика, то меняющиеся внутренние деформации и трение будет нагревать планету, делая ее очень горячей. Но, как мы видели в фильме, планета Миллера выглядит совсем иначе.
Поэтому справедливым будет полагать, что планета всегда повернута к Гаргантюа одной стороной. И это естественно для многих тел, которые вращаются вокруг боле сильного гравитирующего объекта. Например, наша Луна, многие спутники Юпитера и Сатурна всегда повернуты к планете только одной стороной.

Также Торн остановился на еще одном важном моменте:

«Если смотреть на планету Миллера с планеты Манна, то можно увидеть, как она вращается вокруг Гаргантюа с орбитальным периодом 1.7 часа, проходя за это время почти миллиард километров. Это примерно половина скорости света! Из-за замедления времени для экипажа Рейнджера этот период уменьшается, составляя десятую долю секунды. Это очень быстро! И разве это не намного быстрее, чем скорость света? Нет, ведь в системе отчета вихреобразно движущегося пространства вокруг Гаргантюа планета движется медленее, чем свет.
В моей научной модели фильме планета повернута к черной дыре всегда одной стороной, и вращается с бешеной скоростью. Не разорвут ли центробежные силы планету на части из-за этой скорости? Нет: ее снова спасает вращающийся вихрь пространства. Планета не будет ощущать разрушительных центробежных сил, так как само пространство вращается вместе с ней с той же самой скоростью»

6) Как возможны настолько гигантские волны на поверхности планеты Миллера?

На этот вопрос Торн отвечает так:

«Я сделал необходимые физические расчеты, и нашел две возможных научных интерпретации.
Оба этих решения требуют, чтобы положение оси вращения планеты было не стабильным. Планета должна раскачиваться в некотором диапазоне, как показано на рисунке. Это происходит под воздействие гравитации Гаргантюа.

Когда я вычислил период этого раскачивания, то я получил величину около часа. И это совпало с тем временем, который выбрал Крис - до этого еще не знавший о моей научной интерпретации!
Моя вторая модель - это цунами. Приливные силы Гаргантюа может деформировать кору планеты Миллера, с таким же периодом (1 час). Эти деформации могут создавать очень сильные землетрясения. Они могут вызывать такие цунами, которые будут значительно превосходить любые, увиденные когда-либо на Земле.»

7) Как возможны такие невероятные маневры Эндуренс и Рейнджера на орбите Гаргантюа?

1) Эндуренс движется по парковочной орбите с радиусом, равным 10 радиусом Гаргантюа, и экипаж направляющийся на п. Миллера, движется со скоростью С/3. Планета Миллера движется со скоростью 55% от С.
2) Рейнджер должен сбросить скорость от С/3 на меньшую, чтобы снизить орбиту и приблизиться к п. Миллера. Он замедляется до с/4, и достигает окрестностей планеты (разумеется, тут надо соблюсти строгий расчет, чтобы попасть. Но это не проблема для компьютера)

Механизм для столь существенного изменения скорости описан Торном:

“Звезды и малые черные дыры вращаются вокруг гигантских черных дыр, как Гаргантюа. Именно они могут создавать определяющие силы, которые отклонят Рейнджер от его круговой орбиты и направят его вниз - к Гаргантюа. Подобный гравитационный маневр часто используется НАСА в Солнечной системе, хотя тут используется гравитация планет, а не черной дыры. Подробности этого маневра не раскрываются в Интерстеллар, но сам маневр упоминается, когда они говорят о использовании нейтронной звезды, чтобы замедлить скорость.“

Нейтронная звезда показана Торном на рисунке:

Свидание с нейтронной звездой позволяет изменить скорость:

“Такое приближение может очень опасным, т.е. Рейнджер должен приблизиться к нейтронной звезде (или малой черной дыре) достаточно близко, чтобы ощущать сильную гравитацию. Если тормозящая звезда или черна дыра с меньшим радиусом, чем 10 000 км, то людей и Рейнджер разорвут приливные силы. Поэтому нейтронная звезда должна быть по меньшей мере размером 10 000 км.
Я обсуждал эту проблему с Ноланом во время производства сценария, предложив черную дыру или нейтронную звезду на выбор. Нолан выбрал нейтронную звезду. Почему? Потому что он не хотел запутать зрителей двумя черными дырами.”
“Черные дыры, называемые IMBH (Intermediate-Mass Black Holes) - в десять тысяч раз меньше, чем Гаргантюа, но в тысячу раз тяжелее, чем обычные черные дыры. Такой отклонитель Куперу необходим. Некоторые IMBH, как полагают, образуются в шаровых скоплениях, а некоторые находятся в ядрах галактик, где находятся и гигантские черные дыры. Ближайшим примером является Туманность Андромеды, - самая близкая к нам галактика. В ядре Андромеды скрывается дыра, подобная Гаргантюа - примерно 100 млн. солнечных масс. Когда IMBH проходит через какой-либо регион с плотной звездной населенностью, то эффект “динамического трения” замедляет скорость IMBH , и она падает все ниже и ниже, все ближе оказываясь к гигантской черной дыре. В результате IMBH оказывается в непосредственной близости от сверхмассивной черной дыры. Таким образом, природа могла вполне обеспечить Купера таким источником гравитационного отклонения."

Реальное применение "гравитационной рогатки" смотрите на примере межпланетных космических аппаратов, - например, ознакомьтесь с историей Вояджеров.