Основные свойства электрона. Электроны - это что? Свойства и история открытия электронов

Электроном является элементарная частица, являющаяся одной из главных единиц в структуре вещества. Заряд электрона отрицательный. Самый точные измерения были сделаны в начале двадцатого века Милликеном и Иоффе.

Заряд электрона равен минус 1,602176487 (40)*10 -1 9 Кл.

Через эту величину измеряется электрический заряд других мельчайших частиц.

Общее понятие об электроне

В физике элементарных частиц говорится, что электрон — неделимый и не обладающий структурой. Он задействован в электромагнитных и гравитационных процессах, принадлежит к лептоновой группе, так же как и его античастица — позитрон. Среди других лептонов обладает самым легким весом. Если электроны и позитроны сталкиваются, это приводит к их аннигиляции. Подобная пара может возникнуть из гамма-кванта частиц.

До того как измерили нейтрино, именно электрон считался самой легкой частицей. В квантовой механике его относят к фермионам. Также электрон имеет магнитный момент. Если к нему относят и позитрон, то разделяют позитрон как положительно заряженную частицу, а электрон называют негатроном, как частицу с отрицательным зарядом.

Отдельные свойства электронов

Электроны относят к первому поколению лептонов, со свойствами частиц и волн. Каждый из них наделен состоянием кванта, которое определяют в результате измерения энергии, спиновой ориентации и других параметров. Принадлежность к фермионам у него раскрывается через невозможность нахождения в одном состоянии кванта одновременно двух электронов (по принципу Паули).

Его изучают так же, как квазичастицу в периодическом кристаллическом потенциале, у которой эффективная масса способна существенно отличаться от массы в состоянии покоя.

Посредством движения электронов происходит электрический ток, магнетизм и термо ЭДС. Заряд электрона в движении образует магнитное поле. Однако внешнее магнитное поле отклоняет частицу от прямого направления. При ускорении электрон приобретает способность поглощения или излучения энергии в качестве фотона. Из его множества состоят электронные атомические оболочки, число и положение которых определяют химические свойства.

Атомическая масса в основном состоит из ядерных протонов и нейтронов, в то время как масса электронов состовляет порядка 0,06 % от всего атомного веса. Электрическая сила Кулона является одной из главных сил, способных удерживать электрон рядом с ядром. Но когда из атомов создаются молекулы и возникают химические связи, электроны перераспределяются в новом образованном пространстве.

В появлении электронов участвуют нуклоны и адроны. Изотопы с радиоактивными свойствами способны излучать электроны. В условиях лабораторий эти частицы могут изучаться в специальных приборах, а например, телескопы могут детектировать от них излучения в плазменных облаках.

Открытие

Электрон открыли немецкие физики в девятнадцатом веке, когда изучали катодные свойства лучей. Затем другие ученые стали более детально изучать его, выводя в ранг отдельной частицы. Изучалось излучение и другие связанные физические явления.

К примеру, группа во главе с Томсоном оценила заряд электрона и массу катодных лучей, отношения которых, как она выяснили, не зависят от материального источника.
А Беккерель выяснил, что минералы излучают радиацию сами по себе, а их бета-лучи способны отклоняться посредством воздействия электрического поля, причем у массы и заряда сохранялось то же отношение, что и у катодных лучей.

Атомная теория

Согласно этой теории, атом состоит из ядра и электронов вокруг него, расположенных в виде облака. Они находятся в неких квантованных состояниях энергии, изменение которых сопровождается процессом поглощения или излучения фотонов.

Квантовая механика

В начале двадцатого века была сформулирована гипотеза, согласно которой материальные частицы имеют свойства как собственно частиц, так и волн. Также и свет способен проявляться в виде волны (ее называют волной де Бройля) и частиц (фотонов).

В результате было сформулировано знаменитое уравнение Шредингера, где описывалось распространение электронных волн. Этот подход и назвали квантовой механикой. При помощи него вычисляли электронные состояния энергии в атоме водорода.

Фундаментальные и квантовые свойства электрона

Частица проявляет фундаментальные и квантовые свойства.

К фундаментальным относятся масса (9,109*10 -31 килограмм), элементарный электрический заряд (то есть минимальная порция заряда). Согласно тем измерениям, что проведены до настоящего времени, у электрона не обнаруживается никаких элементов, способных выявить его субструктуру. Но некоторые ученые придерживаются мнения, что он является точечной заряженной частицей. Как указано в начале статьи, электронный электрический заряд - это -1,602*10 -19 Кл.

Являясь частицей, электрон одновременно может быть волной. Эксперимент с двумя щелями подтверждает возможность его одновременного прохождения через обе из них. Это вступает в противоречие со свойствами частицы, где каждый раз возможно прохождение только через одну щель.

Считается, что электроны имеют одинаковые физические свойства. Поэтому их перестановка, с точки зрения квантовой механики, не ведет к изменению системного состояния. Волновая функция электронов является антисимметричной. Поэтому ее решения обращаются в нуль тогда, когда одинаковые электроны попадают в одно квантовое состояние (принцип Паули).

Электрон - фундаментальная частица, одна из тех, что являются структурными единицами вещества. По классификации является фермионом (частица с полуцелым спином, названа в честь физика Э. Ферми) и лептоном (частицы с полуцелым спином, не участвующие в сильном взаимодействии, одном из четырех основных в физике). Барионное равно нулю, как и других лептонов.

До недавнего времени считалось, что электрон - элементарная, то есть неделимая, не имеющая структуры частица, однако сейчас ученые другого мнения. Из чего состоит электрон по представлению современных физиков?

История названия

Еще в Древней Греции естествоиспытатели заметили, что янтарь, предварительно натертый шерстью, притягивает к себе мелкие предметы, то есть проявляет электромагнитные свойства. Свое название электрон получил от греческого ἤλεκτρον, что и означает "янтарь". Термин предложил Дж. Стоуни в 1894 году, хотя сама частица была открыта Дж. Томпсоном в 1897 году. Обнаружить ее было сложно, причиной этому служит малая масса, и заряд электрона стал в опыте по нахождению решающим. Первые снимки частицы получил Чарльз Вильсон с помощью специальной камеры, которая применяется даже в современных экспериментах и названа в его честь.

Интересен факт, что одной из предпосылок к открытию электрона является высказывание Бенджамина Франклина. В 1749 году он разработал гипотезу, согласно которой, электричество - это материальная субстанция. Именно в его работах были впервые применены такие термины, как положительный и отрицательный заряды, конденсатор, разряд, батарея и частица электричества. Удельный заряд электрона принято считать отрицательным, а протона - положительным.

Открытие электрона

В 1846 году понятие «атом электричества» стал использовать в своих работах немецкий физик Вильгельм Вебер. Майкл Фарадей открыл термин «ион», который сейчас, пожалуй, знают все еще со школьной скамьи. Вопросом природы электричества занимались многие именитые ученые, такие как немецкий физик и математик Юлиус Плюккер, Жан Перрен, английский физик Уильям Крукс, Эрнст Резерфорд и другие.

Таким образом, прежде чем Джозеф Томпсон успешно завершил свой знаменитый опыт и доказал существование частицы меньшей, чем атом, в этой сфере трудилось множество ученых, и открытие было бы невозможно, не проделай они этой колоссальной работы.

В 1906 году Джозеф Томпсон получил Нобелевскую премию. Опыт заключался в следующем: сквозь параллельные металлические пластины, создававшие электрическое поле, пропускались пучки катодных лучей. Затем они должны были проделать такой же путь, но уже через систему катушек, создававших магнитное поле. Томпсон обнаружил, что при действии электрического поля лучи отклонялись, и то же самое наблюдалось при магнитном воздействии, однако пучки катодных лучей не меняли траектории, если на них действовали оба этих поля в определенных соотношениях, которые зависели от скорости частиц.

После расчетов Томпсон узнал, что скорость этих частиц существенно ниже скорости света, а это значило, что они обладают массой. С этого момента физики стали считать, что открытые частицы материи входят в состав атома, что впоследствии и подтвердилось Он назвал ее «планетарная модель атома».

Парадоксы квантового мира

Вопрос о том, из чего состоит электрон, достаточно сложен, по крайней мере, на данном этапе развития науки. Прежде чем рассматривать его, нужно обратиться к одному из парадоксов квантовой физики, которые даже сами ученые не могут объяснить. Это знаменитый эксперимент с двумя щелями, объясняющий двойственную природу электрона.

Его суть в том, что перед «пушкой», стреляющей частицами, установлена рамка с вертикальным прямоугольным отверстием. Позади нее находится стена, на которой и будут наблюдаться следы от попаданий. Итак, для начала нужно разобраться, как ведет себя материя. Проще всего представить, как запускаются машиной теннисные мячики. Часть шариков попадает в отверстие, и следы от попаданий на стене складываются в одну вертикальную полосу. Если на некотором расстоянии добавить еще одно такое же отверстие, следы будут образовывать, соответственно, две полосы.

Волны же в такой ситуации ведут себя по-другому. Если на стене будут отображаться следы от столкновения с волной, то в случае с одним отверстием полоса тоже будет одна. Однако все меняется в случае с двумя щелями. Волна, проходя через отверстия, делится пополам. Если вершина одной из волн встречается с нижней частью другой, они гасят друг друга, и на стене появится интерференционная картина (несколько вертикальных полос). Места на пересечении волн оставят след, а места, где произошло взаимное гашение, нет.

Удивительное открытие

С помощью вышеописанного эксперимента ученые могут наглядно продемонстрировать миру различие между квантовой и классической физикой. Когда они стали обстреливать стену электронами, на ней проявлялся обычный вертикальный след: некоторые частицы, точно так же как теннисные мячики, попадали в щель, а некоторые нет. Но все изменилось, когда возникло второе отверстие. На стене проявилась Сначала физики решили, что электроны интерферируют между собой, и решили пускать их по одному. Однако уже спустя пару часов (скорость движущихся электронов все же гораздо ниже скорости света) снова стала проявляться интерференционная картина.

Неожиданный поворот

Электрон, вместе с некоторыми другими частицами, такими как фотоны, проявляет корпускулярно-волновой дуализм (также применяется термин "квантово-волновой дуализм"). Подобно одновременно и жив, и мертв, состояние электрона может быть как корпускулярным, так и волновым.

Однако следующий шаг в этом эксперименте породил еще больше загадок: фундаментальная частица, о которой, казалось, известно все, преподнесла невероятный сюрприз. Физики решили установить у отверстий наблюдательное устройство, чтобы зафиксировать, через какую именно щель проходят частицы, и каким образом они проявляют себя в качестве волны. Но как только было поставлен наблюдательный механизм, на стене появились только две полосы, соответствующие двум отверстиям, и никакой интерференционной картины! Как только «слежку» убирали, частица вновь начинала проявлять волновые свойства, будто знала, что за ней уже никто не наблюдает.

Еще одна теория

Физик Борн предположил, что частица не превращается в волну в прямом смысле слова. Электрон «содержит» в себе волну вероятности, именно она дает интерференционную картину. Эти частицы обладают свойством суперпозиции, то есть могут находиться в любом месте с определенной долей вероятности, поэтому их и может сопровождать подобная «волна».

Тем не менее результат налицо: сам факт наличия наблюдателя влияет на результат эксперимента. Кажется невероятным, но это не единственный пример подобного рода. Физики проводили опыты и на более крупных частях материи, однажды объектом стал тончайший отрез алюминиевой фольги. Ученые отметили, что один только факт некоторых измерений влиял на температуру предмета. Природу подобных явлений они объяснить пока еще не в силах.

Структура

Но из чего состоит электрон? На данный момент современная наука не может дать ответ на этот вопрос. До недавнего времени он считался неделимой фундаментальной частицей, сейчас же ученые склоняются к тому, что он состоит из еще более мелких структур.

Удельный заряд электрона также считался элементарным, но теперь открыты кварки, имеющие дробный заряд. Существует несколько теорий относительно того, из чего состоит электрон.

Сегодня можно увидеть статьи, в которых заявляется, что ученым удалось разделить электрон. Однако это верно лишь отчасти.

Новые эксперименты

Советские ученые еще в восьмидесятых годах прошлого века предположили, что электрон возможно будет разделить на три квазичастицы. В 1996 году удалось разделить его на спинон и холон, а недавно физиком Ван ден Бринком и его командой частица была разделена на спинон и орбитон. Однако расщепления удается добиться только в специальных условиях. Эксперимент может проводиться в условиях крайне низких температур.

Когда электроны «остывают» до абсолютного нуля, а это около -275 градусов по Цельсию, они практически останавливаются и образуют между собой нечто вроде материи, будто сливаясь в одну частицу. В таких условиях физикам и удается наблюдать квазичастицы, из которых «состоит» электрон.

Переносчики информации

Радиус электрона очень мал, он равен 2,81794 . 10 -13 см, однако выходит, что его составляющие имеют намного меньший размер. Каждая из трех частей, на которые удалось «разделить» электрон, несет в себе информацию о нем. Орбитон, как следует из названия, содержит данные об орбитальной волне частицы. Спинон отвечает за спин электрона, а холон сообщает нам о заряде. Таким образом, физики могут наблюдать отдельно различные состояния электронов в сильно охлажденном веществе. Им удалось проследить пары «холон-спинон» и «спинон-орбитон», но не всю тройку вместе.

Новые технологии

Физикам, открывшим электрон, пришлось ждать несколько десятков лет до тех пор, пока их открытие было применено на практике. В наше время технологии находят использование уже через несколько лет, достаточно вспомнить графен - удивительный материал, состоящий из атомов углерода в один слой. Чем будет полезно расщепление электрона? Ученые предрекают создание скорость которого, по их мнению, в несколько десятков раз больше, чем у самых мощных современных ЭВМ.

В чем тайна квантовой компьютерной технологии? Это можно назвать простой оптимизацией. В привычном компьютере минимальная, неделимая часть информации - это бит. И если мы считаем данные чем-то визуальным, то для машины варианта только два. Бит может содержать либо ноль, либо единицу, то есть части двоичного кода.

Новый метод

Теперь давайте представим, что в бите содержится и ноль, и единица - это «квантовый бит», или «кьюбит». Роль простых переменных будет играть спин электрона (он может вращаться либо по часовой стрелке, либо против). В отличие от простого бита, кьюбит может выполнять одновременно несколько функций, за счет этого и будет происходить увеличение скорости работы, малая масса и заряд электрона здесь не имеют значения.

Объяснить это можно на примере с лабиринтом. Чтобы выбраться из него, нужно перепробовать множество различных вариантов, из которых правильным будет только один. Традиционный компьютер пусть и решает задачи быстро, но все же в один момент времени может работать только над одной-единственной проблемой. Он переберет по одному все варианты путей, и в итоге обнаружит выход. Квантовый же компьютер, благодаря двойственности кьюбита, может решать множество задач одновременно. Он пересмотрит все возможные варианты не по очереди, а в единый момент времени, и тоже решит задачу. Трудность пока состоит только в том, чтобы заставить множество квантов работать над одной задачей - это и будет основой компьютера нового поколения.

Применение

Большинство людей пользуется компьютером на бытовом уровне. С этим пока отлично справляются и обычные ПК, однако чтобы прогнозировать события, зависящие от тысяч, а может и сотен тысяч переменных, машина должна быть просто огромна. же легко справится с такими вещами, как прогнозирование погоды на месяц, обработка данных по стихийным бедствиям и их предсказание, а также будет совершать сложнейшие математические вычисления со многими переменными за долю секунды, и все это с процессором величиной в несколько атомов. Так что возможно, уже очень скоро наши самые мощные компьютеры будут толщиной с лист бумаги.

Сохранение здоровья

Квантовые компьютерные технологии внесут огромный вклад в медицину. Человечество получит возможность создавать наномеханизмы с мощнейшим потенциалом, с их помощью можно будет не только диагностировать болезни, просто посмотрев на весь организм изнутри, но и оказывать медицинскую помощь без хирургического вмешательства: мельчайшие роботы с «мозгами» отличного компьютера смогут выполнять все операции.

Неизбежна революция и в сфере компьютерных игр. Мощные машины, способные мгновенно решать задачи, смогут воспроизводить игры с невероятно реалистичной графикой, не за горами уже и компьютерные миры с полным погружением.

У этого термина существуют и другие значения, см. Электрон (значения). «Электрон 2» «Электрон» серия из четырёх советских искусственных спутников Земли, запущенных в 1964 году. Цель … Википедия

Электрон - (Новосибирск,Россия) Категория отеля: 3 звездочный отель Адрес: 2 ой Краснодонский Переулок … Каталог отелей

- (символ е, е), первая элем. ч ца, открытая в физике; матер. носитель наименьшей массы и наименьшего электрич. заряда в природе. Э. составная часть атомов; их число в нейтр. атоме равно ат. номеру, т. е. числу протонов в ядре. Заряд (е) и масса… … Физическая энциклопедия

Электрон - (Москва,Россия) Категория отеля: 2 звездочный отель Адрес: Проспект Андропова 38 строение 2 … Каталог отелей

Электрон - (e , e) (от греческого elektron янтарь; вещество, легко электризующееся при трении), стабильная элементарная частица с отрицательным электрическим зарядом e=1,6´10 19 Кл и массой 9´10 28 г. Относится к классу лептонов. Открыт английским физиком… … Иллюстрированный энциклопедический словарь

- (е е), стабильная отрицательно заряженная элементарная частица со спином 1/2, массой ок. 9.10 28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях.… …

- (обозначение е), устойчивая ЭЛЕМЕНТАРНАЯ ЧАСТИЦА с отрицательным зарядом и массой покоя 9,1310 31 кг (что составляет 1/1836 от массы ПРОТОНА). Электроны были обнаружены в 1879 г. английским физиком Джозефом Томсоном. Они движутся вокруг ЯДРА,… … Научно-технический энциклопедический словарь

Сущ., кол во синонимов: 12 дельта электрон (1) лептон (7) минерал (5627) … Словарь синонимов

Искусственный спутник Земли, созданный в СССР для изучения радиационных поясов и магнитного поля Земли. Запускались парами один по траектории, лежащей ниже, а другой выше радиационных поясов. В 1964 запущено 2 пары Электронов … Большой Энциклопедический словарь

ЭЛЕКТРОН, элктрона, муж. (греч. elektron янтарь). 1. Частица с наименьшим отрицательным электрическим зарядом, образующая в соединении с протоном атом (физ.). Движение электронов создает электрический ток. 2. только ед. Легкий магниевый сплав,… … Толковый словарь Ушакова

ЭЛЕКТРОН, а, м. (спец.). Элементарная частица с наименьшим отрицательным электрическим зарядом. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Книги

  • Электрон. Энергия Космоса , Ландау Лев Давидович, Китайгородский Александр Исаакович. Книги лауреата Нобелевской премии Льва Ландау и Александра Китайгородского - тексты, переворачивающие обывательское представление об окружающем мире. Большинство из нас, постоянно сталкиваясь…
  • Электрон. Энергия космоса , Ландау Л., Китайгородский А.. Книги лауреата Нобелевской премии Льва Ландау и Александра Китайгородского тексты, переворачивающие обывательское представление об окружающем мире. Большинствоиз нас, постоянно сталкиваясь с…

Строение вещества.

Строение атома.

Атом – мельчайшая частица химического элемента, носитель всех его химических свойств. Атом неделим в химическом отношении. Атомы могут существовать как в свободном состоянии, так и в соединении с атомами того же элемента или другого элемента.
За единицу атомных и молекулярных масс в настоящее время приняли 1/12 часть массы атома углерода с атомной массой, равной 12 (изотоп ). Эту единицу называют углеродной единицей.

Масса и размеры атомов. Число Авогадро.

Грамм-атом, так же как и грамм-молекула любого вещества, содержит 6,023 10^23 атомов или соответственно молекул. Это число называется числом Авогадро (N0). Так, в 55,85 г железа, 63,54 г меди, 29,98 г алюминия, и т. п. находится число атомов, равное числу Авогадро.
Зная число Авогадро, нетрудно подсчитать массу одного атома любого элемента. Для этого гpaмм-атомную массу одного атома надо разделить на 6,023 10^23 . Так, масса атома водорода (1) и масса атома углерода (2) соответственно равны:

Исходя из числа Авогадро, можно оценить и объем атома. Например, плотность меди равна 8,92 г/см^3, а грамм-атомная масса 63,54 г. Значит, один грамм-атом меди занимает объем , и на один атом меди приходится объем .

Структура атомов.

Атом является сложным образованием и состоит из ряда более мелких частиц. Атомы всех элементов состоят из положительно заряженного ядра и электронов - отрицательно заряженных частиц очень малой массы. Ядро занимает ничтожно малую часть всего объема атома. Диаметр атома равен см, а диаметр ядра - см.
Хотя диаметр ядра атома в 100000 paз меньше диаметра самого атома, практически вся масса атома сосредоточена в его ядре. Отсюда следует, что плотность атомных ядер очень велика. Если бы удалось собрать 1 см3 атомных ядер, то его масса была бы около 116 млн. тонн.
Ядро состоит из протонов и нейтронов. Эти частицы имеют общее название - нуклоны.
Протон - - устойчивая элементарная частица с массой, близкой к углеродной единице. Заряд протона равен заряду электрода, но с обратным знаком. Если заряд электрона принимают равным -1, то заряд протона равен +1. Протон – это атом водорода, лишенный электрона.
Нейтрон – атомная оболочка, отрицательный заряд которой компенсирует положительный заряд ядра, обусловленный наличием в нем протонов.
Таким образом, количество электронов в атоме равно количеству протонов в его ядре.
Зависимость между числом протонов, числом нейтронов и массовым числом атома выражается уравнением: N=A-Z
Отсюда число нейтронов в ядре атома любого элемента равно разности между его массовым числом и числом протонов.
Так число нейтронов в ядре атома радия с массой 226 N=A-Z=226-88=138

Масса и заряд электрона.

Все химические процессы образования и разрушения химических соединений происходят без изменения ядер атомов элементов, входящих в состав этих соединений. Изменения претерпевают только электронные оболочки. Химическая энергия, таким образом, связанa с энергией электронов. Чтобы понимать процессы образования и разрушения химических соединений, следует иметь представления о свойствах электрона вообще и особенно о свойствах и поведении электрона в атоме.
Электрон - это элементарная частица, обладающая элементарным отрицательным электрическим зарядом, т. е. наименьшим могущим существовать количеством электричества. Заряд электрона равен эл. ст. ед. или кулона. Масса покоя электрона равна г, т.е. в 1837,14 раза меньше массы атома водорода. Масса электрона составляет углеродной единицы.

Модель атома по Бору.

В начале XX века М. Планк А. Эйнштейн создали квантовую теорию света, согласно которой свет является потоком отдельных квантов энергии, которую нecyт частицы света - фотоны .
Величина кванта энергии (E) различна для различных излучений и пропорциональна частоте колебаний :
,
где h - постоянная Планка.
М. Планк показал, что атомы поглощают или испускают лучистую энергию только отдельными вполне определенными порциями – квантами .
Пытаясь увязать закон классической механики с квантовой теорией датский ученый Н. Бор считал, что электрон в атоме водорода может находиться лишь на определенных - постоянных орбитах, радиусы которых относятся друг к другу как квадраты целых чисел Эти орбиты Н. Бором были названы стационарными.
Излучение энергии происходит только при переходе электрона с более дальней орбиты на более близкую к ядру орбиту. При переходе же электрона с болей близкой орбиты на более дальнюю энергия атомом поглощается.
, где - энергии электронов в стационарных состояниях.
При Ei > Ек энергия выделяется.
При Ei < Ек энергия поглощается.
Решение вопроса о распределении электронов в атоме основано на изучении линейчатых спектров элементов и их химических свойств. Спектр атома водорода почти полностью подтверждал теорию Н. Бора. Однако наблюдаемое расщепление спектральных линий у многоэлектронных атомов и усиление этого расщепления в магнитном и - электрических полях теория Н. Бора объяснить не могла.

Волновые свойства электрона.

Законы классической физики противопоставляют друг другу понятия «частица» и «волна». Современная физическая теория, получившие название квантовой, или волновой механики , показала, что движение и взаимодействие частиц малой массы - микрочастиц происходят по законам, отличным от законов классической механики. Микрочастице одновременно присущи некоторые свойства корпускул (частиц) и некоторые свойства волн. С одной стороны, электрон, протон или другая микрочастица движется и действует подобно корпускуле, например, при соударении с другой микрочастицей. С другой стороны, при движении микрочастицы обнаруживаются типичные для электромагнитных волн явления интерференции и дифракции.
Таким образом, в свойствах электрона (как и других микрочастиц), в законах его движения проявляются неразрывность и взаимосвязь двух качественно различных форм существования материи, вещества и поля. Микрочастицу нельзя рассматривать ни как обыкновенную частицу, ни как обыкновенную волну. Микрочастица обладает корпускулярно-волновым дуализмом.
Говоря о взаимосвязи вещества и поля, можно прийти к выводу, что, если каждой материальной частице присуща определенная масса, то, по-видимому, этой же частице должна отвечать и определенной длины, волна. Возникает, вопрос о взаимосвязи массы и волны. В 1924 году французский физик Луи де Бройль высказал предположение, что с каждым движущимся электроном (и вообще с каждой движущейся материальной частицей) связан волновой процесс, длина волны которого , где - длина волны в см(м), h - постоянная Планка, равная эрг. сек (), m - масса частицы в г (кг), - скорость частицы, в см/сек.
Из этого уравнения видно, что частица, находящаяся в покое, должна иметь бесконечно большую, длину волны и что длина волны уменьшается с увеличением скорости частицы. Длина волны у движущейся частицы большой массы очень мала и экспериментально ее определить пока нельзя. По тому мы говорим о волновых свойствах только микрочастиц. Электрон обладает волновыми свойствами. Это значит, что его движение в атоме можно описать волновым уравнением.
Планетарная модель строения атома водорода, созданная Н. Бором, который исходил из представления об электроне только как классической частице, не может объяснить целого ряда свойств электрона. Квантовая механика показала, что представление о движении электрона вокруг ядра по определенным орбитам подобно движению планет вокруг Солнца, следует считать несостоятельным.
Электрон, обладая свойствами волны, движется по всему объему, образуя электронное облако, которое для электронов, находящихся в одном атоме, может иметь различную форму. плотность этого электронного облака в той или иной части атомного объема неодинакова.

Характеристика электрона четырьмя квантовыми числами.

Основная характеристика, определяющая движение электрона в поле ядра,- это его энергия. Энергия электрона, как и энергия частицы светового потока - фотона, принимает не любые, а лишь определенные дискретные, прерывные или, как говорят, квантующиеся значения.
Движущийся электрон обладает тремя степенями свободы перемещения в пространстве (соответственно трем координатным осям) и одной дополнительной степенью свободы, обусловленной наличием у электрона собственного механического и магнитного моментов, которые учитывают вращение электрона вокруг своей оси. Следовательно, для полной энергетической характеристики состояния электрона в атоме необходимо и достаточно иметь четыре параметра. Эти параметры получили название квантовых чисел . Квантовые числа, так же как и энергия электрона, могут приникать не все, а лишь определенные значения. Соседние значения квантовых чисел различаются на единицу.

Главное квантовое число n характеризует общий запас энергии электрона или его энергетический уровень. Главное квантовое число может принимать значения целых чисел от 1 до . Для электрона, находящегося в поле ядра главное квантовое число может принимать значения от 1 до 7 (соответственно номеру периода в периодической системе, в котором находится элемент). Энергетические уровни обозначаются или цифрами в соответствии со значениями главного квантового числа, или буквами:

п

Обозначение уровня

Если, например, n=4, то электрон, находится на четвертом, считая от ядра атома, энергетическом уровне, или на N уровне.

Орбитальное квантовое числа l, которое иногда называют побочным квантовым числом, характеризует различное энергетическое состояние электрона данного уровня. Тонкая структура спектральных линий говорит о том, что электроны каждого энергетического уровня группируются в подуровни. Орбитальное квантовое число связано с моментом количества движения электрона при его движении относительно ядра атома. Орбитальное квантовое число определяет также форму электронного облака Квантовое число l может принимать все целочисленные значения от 0 до (п-1). Например, при n=4, l=0, 1, 2, 3. Каждому значению l соответствует определенный подуровень. Для подуровней применяются буквенные обозначения. Так, при l=0, 1, 2, 3 электроны находятся соответственно на s-, p-, d-, f- подуровнях. Электроны различных подуровней соответственно называют s-, p-, d-, f - электронами. Возможное число подуровней для каждого энергетического уровня равно номеру этого уровня, но не превышает четырех. Первый энергетический уровень (п=1) состоит из одного s-подуровня, второй (п=2), третий (п=3) и четвертый (п=4) энергетические уровни состоят соответственно из двух (s, p), трех (s, p, d) и четырех (s, p, d, f) подуровней. Больше четырех подуровней не может быть, так как значения l=0, 1, 2, 3 описываю электроны атомов всех 104 известных сейчас элементов.
Если l=0 (s-электроны), то момент количества движения электрона относительно ядра атома равен нулю. Это может быть только когда электрон поступательно движется не вокруг ядра, а от ядра к периферии и обратно. Электронное облако s-электрона имеет форму шара.

Магнитное квантовое число - c моментом количества движения электрона связан и его магнитный момент. Магнитное квантовое число характеризует магнитный момент электрона. магнитное квантовое число характеризует магнитный момент электрона и указывает на ориентацию электронного облака относительного избранного направления или относительно направления магнитного поля. Магнитное квантовое число может принимать любые целые положительные и отрицательные значения, включая и ноль в пределах от – l до + l. Например, если l=2, то имеет 2 l+1=5 значений (-2, -1, 0, +1, +2). При l=3 число значений равно 2 l+1=7 (-3, -2, -1, 0, +1, +2, +3). Число значений магнитного квантового числа, которое равно 2 l+1, - это число энергетических состояний, в которых могут находиться электроны данного подуровня. Таким образом, s-электроны имеют лишь одно состояние (2 l+1=1), p-электроны – 3 состояния (2 l+1=3), d-, f-электроны – соответственно 5 и 7 состояний. Энергетические состояния принято обозначать схематически энергетическими ячейками, изображая их в виде прямоугольников, а электроны в виде стрелок в этих ячейках.

Спиновое квантовое число - характеризует внутреннее движение электрона - спин. Оно связано с собственным магнитным моментом электрона, обусловленным его движением вокруг своей оси. Это квантовое число может принимать только два значения: + 1/2 и -1/2, в зависимости от того, параллельно или антипараллельно магнитному полю, обусловленному движением электрона вокруг ядра, ориентируется магнитное поле спина электрона.
Два электрона (пара) с одинаковыми значениями квантовых чисел: n, I, но с противоположно направленными спинами ( ↓) называются спаренными или неподеленной парой электронов. Электроны с ненасыщенными спинами () называются неспаренными.

Принцип Паули, принцип наименьшей энергии, правило Гунда.
Распределение электронов в атомах элементов определяют три основных положения: принцип Паули, принцип наименьшей энергии и правило Гунда.

Принцип Паули. Изучая многочисленные, спектры атомов швейцарский физик В. Паули в 1925 году пришел к выводу, который получил название принципа или запрета Паули: „Двум электронам атома запрещено быть во всех отношениях похожими друг на друга" или, что то же самое, „в атоме не может быть даже двух электронов с одинаковыми значениями всех четырех квантовых чисел". Энергетические состояния электронов, характеризуемые одинаковыми значениями трех квантовых чисел: n, I и m1 принято обозначать энергетической ячейкой .
Согласно принципу Паули, в энергетической ячейке может быть только два электрона, причем с противоположными спинами
Нахождение в одной энергетической ячейке третьего электрона означало бы, что у двух из них все четыре квантовых числа одинаковы. Число, возможных состояний электронов (рис. .4) на данной подуровне равно числу значений магнитного квантового числа для этого подуровня, т. е. 21+ 1. Максимальное число электронов на этом подуровне, согласно принципу Паули будет 2(21+ 1). Таким образом, на s-подуровне возможно 2 электрона; на p-подуровне 6 электронов; на d-подуровне 10 электронов; на f-подуровне 14 электронов. Число возможных состояний электронов на каком-либо уровне равно квадрату главного квантового числа а максимальное число электронов на этом уровне

Принцип наименьшей энергии.

Последовательность размещения электронов в атоме должна отвечать наибольшей связи их с ядром, т. е. электрон, должен обладать наименьшей энергией. Поэтому электрону необязательно занимать вышележащий энергетический уровень, если в нижележащем уровне есть места, располагаясь на которых электрон будет обладать меньшей энергией.

Так как энергия электрона в основном определяется значениями главного n и орбитального / квантовых чисел, то сначала заполняются те подуровни, для которых сумма значений квантовых чисел n и / является меньшей. Например, запас энергии на подуровне 4s(n +/ = 4 +0 = 4) меньше, чем на 3d(n + /= 3 + 2 = 5); на 5s (n + / = 5 + 0 = 5) меньше, чем на 4d(n + / = 4 + 2 = 6); на 5р(п + / = 5 +1 =6) меньше, чем на 4f(n + 1 = 4+3 = 7). Если для двух уровней суммы значений n и / равны, то сначала идет заполнение подуровня с меньшим значением п. Например, на подуровнях 3d, 4p, 5s суммы значений n и / равны пяти, в этом случае сначала заполняются подуровни с меньшими значениями главного квантового числа n, т. е. в следующей последовательности: 3d-4р-5s.
Когда энергии близких подуровней очень мало отличаются друг от друга, встречаются некоторые исключения из этого правила. Так, подуровень 5d заполняется одним электроном 5dl раньше 4f; 6d1-2 раньше 5f.
Заполнение энергетических уровней и подуровней идет в следующей последовательности: ls→2s→2p→3s→3p→4s→ 3d → 4р→ 5s → 4d → 5р→ 6s →(5dl) →4f→ 5d→6p→ 7s→ (6d1-2)→5f→ 6d→7p

Правило Гунда.
Электроны в пределах данного подуровня располагаются сначала каждый в отдельной ячейке в виде неспаренных „холостых" электронов. Иными словами, при данном значении I электроны в атоме располагаются так, что суммарное спиновое число их максимально. Например, если в трех р-ячейках надо разместить три электрона, то каждый из них будет располагаться в отдельной ячейке таким образом:

Электронные формулы атомов и схемы.

Принимая во внимание рассмотренные положения, легко представить распределение электронов по энергетическим уровням и подуровням в атомах любого элемента. Это распределение электронов в атоме записывается в виде так называемых электронных формул. В электронных формулах буквами s, p, d, f обозначаются энергетические подуровни электронов; цифры впереди букв означают энергетический уровень, в котором находится данный электрон, а индекс вверху справа - число электронов на данном подуровне. Например, запись 5р3 оначает, что 3 электрона располагаются на р-подуровне пятого энергетического уровня.
Чтобы составить электронную формулу атома любого элемента, достаточно знать номер данного элемента в периодической системе и выполнить основные положения, которым подчиняется распределение электронов в атоме.
Пусть, например, нужно составить электронные формулы для атомов серы, кальция, скандия, железа и лантана. Из периодической таблицы определяем номера данных элементов, которые соответственно равны 16, 20, 21, 26, . Это значит, что на энергетических уровнях и подуровнях у атомов данных элементов содержится соответственно 16, 20, 21, 26, 57 электронов. Соблюдая принцип Паули и принцип наименьшей энергии, т. е. последовательность заполнения энергетических уровней и подуровней, можно составить электронные формулы атомов этих элементов:

Структура электронной оболочки атома может быть изображена и в виде схемы размещения электронов по энергетическим ячейкам.
Для атомов железа такая схема имеет следующий вид:

На этой схеме наглядно видно выполнение правила Гунда. На Зd-подуровне максимальное количество, ячеек (четыре) заполнено неспаренными электронами. Изображение структуры электронной оболочки в атоме в виде электронных формул и в виде схем наглядно не отражает волновых свойств электрона. Однако следует помнить, что для каждого s-, р-, d-, f-электрона характерно свое электронное облако. Различная форма электронного облака указывает на то, что электрон имеет неодинаковую вероятность нахождения в данной области пространства атома. В зависимости от значения магнитного квантового числа m1 ориентация электронного облака в пространстве будет также различной.

Введение………………………………………………………………………

Основная часть………………………………………………………………

Определение электрона, его открытие …………..…...……………

Свойства электрона …………………………………………………

Строение электронных оболочек ……..…………………………..

Выводы ……………………………………………………………….

Заключение……………………………………………………………………

Список литературы…………………………………………………………..

Приложения

Приложение 1……………………………………………………………….

Вступление

Первое представление, что такое атом, электрон, электронные оболочки нам дали ещё в 8-ом классе. Это были азы, самое простое объяснение сложнейшего, как потом оказалось, материала. Для меня в 8 классе самых простых объяснений было достаточно. Но не так давно, месяца 2-3 назад, я начал задумываться, а как же на самом деле устроен атом, как движется электрон, что такое «электронная орбиталь» в полном её понимании. Сначала я пытался сам подумать над этим, но ничего «дельного», по моим представлениям, у меня не выходило. Тогда я начал изучать дополнительную литературу, чтобы получить полное представление о микромире и ответить на вопросы, которые меня интересуют. С каждой новой строкой из прочитанного для меня открывалось что-то новое. Далее я попытался изложить то, что смог изучить и частично (ибо знания такого высокого уровня даются в университетах и изучаются множеством учёных всего мира, и школьнику такой материал в полном смысле осознать очень сложно) понять за это время.

Основная часть

1. Определение электрона, его открытие.

Электрон – стабильная, отрицательно заряженная элементарная частица , одна из основных структурных единиц вещества.

Является фермионом (то есть имеет полуцелый спин ). Относится к лептонам (единственная стабильная частица среди заряженных лептонов). Из электронов состоят электронные оболочки атомов , где их число и положение определяет почти все химические свойства веществ. Движение свободных электронов обусловливает такие явления, как электрический ток в проводниках и вакууме .

Датой открытияэлектрона считается 1897 год, когда Томсоном был поставлен эксперимент по изучению катодных лучей. Первые снимки треков отдельных электронов были получены Чарльзом Вильсоном при помощи созданной им туманной камеры.

2. Свойства электрона.

А. Масса и заряд частицы.

Заряд электрона неделим и равен −1,(35)·10−19 Кл. Он был впервые непосредственно измерен в экспериментах А. Ф. Иоффе (1911) и Р. Милликена (1912). Эта величина служит единицей измерения электрического заряда других элементарных частиц (в отличие от заряда электрона, элементарный заряд обычно берётся с положительным знаком). Масса электрона равна 9,(40)·10−31 кг.

Б. Невозможность описания электрона через классические законы механики и электродинамики.

Долгое время знаний о действительном строении атома не было. В конце XIX – начале XX в. в. было доказано, что атом является сложной частицей, состоящей из более простых (элементарных) частиц. В 1911 г. на основании экспериментальных данных английский физик Э. Резерфорд предложил ядерную модель атома с почти полной концентрацией массы в относительно малом объеме. Ядро атома, состоящее из протонов и нейтронов, имеет положительный заряд. Оно окружено электронами, несущими отрицательный заряд.

Описать движение электронов в атоме с позиций классической механики и электродинамики невозможно, так как:

· если утверждать, что электрон (как цельное тело) движется по замкнутой круговой орбите вокруг ядра со Ѵ~ м/c (т. е. рассматривать с позиции классической механики), то под действием центростремительной силы он в кратчайшее время (~ сек) должен будет упасть на ядро атома, что приведёт к не существованию атома как такового и не существованию молекул, т. к. электроны осуществляют взаимодействие между атомами;

· если рассматривать электрон как заряженное тело (т. е. рассматривать с позиции электродинамики), то он неизбежно должен притянуться положительно заряженным ядром, а также при движении он будет излучать электромагнитное поле и терять при этом энергию, что неизбежно приведёт к аналогичной ситуации, что и в случае рассмотрения с позиции классической механики.

Вот что писал Нильс Бор:

«Недостаточность классической электродинамики для объяснения свойств атома на основе модели резерфордовского типа ясно проявляется при рассмотрении простейшей системы, состоящей из положительно заряженного ядра очень малого размера и электрона, движущегося по замкнутой орбите вокруг ядра. Ради простоты примем, что масса электрона пренебрежимо мала по сравнению с массой ядра, а скорость электронов мала по сравнению со скоростью света.

Сначала допустим, что излучение энергии отсутствует. В этом случае электрон будет двигаться по стационарным эллиптическим орбитам… Теперь рассмотрим влияние излучения энергии, как оно обычно измеряется по ускорению электрона. В этом случае электрон уже не будет двигаться по стационарным орбитам. Энергия W будет непрерывно убывать, и электрон будет приближаться к ядру, описывая всё меньшие орбиты со всё возрастающей частотой; в то время как электрон в среднем выигрывает в кинетической энергии, система в целом теряет энергию. Этот процесс будет продолжаться до тех пор, пока размеры орбит станут того же порядка, что и размеры электронов или ядра. Простой расчёт показывает, что испускаемая во время указанного процесса энергия неизмеримо больше той, которая испускается при обычных молекулярных процессах. Очевидно, что поведение такой системы совершенно отлично от того, что действительно происходит с атомной системой в природе. Во-первых, реальные атомы длительное время имеют определённые размеры и частоты. Далее представляется, что если рассмотреть какой-либо молекулярный процесс, то после излучения определённого количества энергии, характерного для излучаемой системы, эта система всегда вновь окажется в состоянии устойчивого равновесия, в котором расстояния между частицами будут того же порядка величины, что и до процесса».

В. Постулаты Бора.

Основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов, а также квантового характера испускания и поглощения света. Бор исходил из планетарной модели атома Резерфорда.

· Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

· Электрон в атоме , не теряя энергии, двигается по определённым дискретным круговым орбитам для которых момент импульса квантуется . Пребывание электрона на орбите определяет энергию этих стационарных состояний.

· При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии h ν = En − Em , где En ; Em энергетические уровни , между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний - поглощается.

a) «Динамическое равновесие системы в стационарных состояниях можно рассматривать с помощью обычной механики, тогда как переход системы из одного стационарного состояния в другое нельзя трактовать на этой основе.

b) Указанный переход сопровождается испусканием монохроматического излучения, для которого соотношение между частотой и количеством выделенной энергии именно такое, которое дает теория Планка…»

позволили Бору составить свою теорию строения атома или Боровскую модель атома.

Она представляет собой полуклассическую модель атома, за основу которой взята теория Резерфорда о строении атома. Используя выше изложенные допущения и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, Бор получил следующие значения для радиуса стационарной орбиты и энергии находящегося на этой орбите электрона:

https://pandia.ru/text/78/008/images/image006_77.gif" alt="m_e" width="24" height="12"> - масса электрона, Z - количество протонов в ядре, - диэлектрическая постоянная, e - заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера , решая задачу о движении электрона в центральном кулоновском поле.

Радиус первой орбиты в атоме водорода R0=5,(36)·10−11 м, ныне называется боровским радиусом , либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты эВ представляет собой энергию ионизации атома водорода.

Примечание: данная модель – это грубое применение законов электродинамики с некоторыми допущениями для объяснения движения электрона исключительно в атоме водорода. Для более сложных систем с большим количеством электронов данная теория неприемлема. Она является следствием более общих квантовых законов.

Г. Корпускулярно-волновой дуализм.

В классической механике рассматривается два вида движения: движение тела с локализацией перемещающегося объекта в каждой точке траектории в определенный момент времени и движение волны , делокализованной в пространстве среды. Для микрообъектов такое разграничение движения невозможно. Эту особенность движения называют корпускулярно-волновым дуализмом.

Корпускулярно-волновой дуализм – способность микрочастицы, обладающей массой, размерами и зарядом, одновременно проявлять и свойства, характерные для волн, например, способность к дифракции. В зависимости от того, какие свойства частиц изучаются, они проявляют либо одни, либо другие свойства.

Автором идеи корпускулярно-волнового дуализма стал А. Эйнштейн , который предложил рассматривать кванты электромагнитного излучения – фотоны – как движущиеся со скоростью света частицы, имеющие нулевую массу покоя. Их энергия равна E = mc 2 = h ν = hc / λ ,

где m - масса фотона, с - скорость света в вакууме, h - постоянная Планка, ν - частота излучения, λ - длина волны.

В 1924 году французский физик Луи де Бройль выдвинул идею о том, что волновой характер распространения, установленный для фотонов, имеет универсальный характер. Он должен проявляться для любых частиц, обладающих импульсом . Все частицы, имеющие конечный импульс , обладают волновыми свойствами, в частности, подвержены интерференции и дифракции .

Формула де Бройля устанавливает зависимость длины волны , связанной с движущейся частицей вещества, от импульса частицы:

где - масса частицы, - ее скорость, - постоянная Планка . Волны, о которых идет речь, называются волнами де Бройля. Формула де Бройля экспериментально подтверждается опытами по рассеянию электронов и других частиц на кристаллах и по прохождению частиц сквозь вещества. Признаком волнового процесса во всех таких опытах является дифракционная картина распределения электронов (или других частиц) в приемниках частиц.

Волны де Бройля имеют специфическую природу, не имеющую аналогии среди волн, изучаемых в классической физике: квадрат модуля амплитуды волны де Бройля в данной точке является мерой вероятности того, что частица обнаруживается в этой точке. Дифракционные картины, которые наблюдаются в опытах, являются проявлением статистической закономерности, согласно которой частицы попадают в определенные места в приёмниках – туда, где интенсивность волны де Бройля оказывается наибольшей. Частицы не обнаруживаются в тех местах, где, согласно статистической интерпретации, квадрат модуля амплитуды «волны вероятности» обращается в нуль.

Данная теория положила начало становления квантовой механики. В настоящий момент концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как служила только интерпретацией, способом описать поведение квантовых объектов, подбирая ему аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении.

Д. Принцип неопределённости Гейзенберга.

В 1927 г. немецкий физик-теоретик В. Гейзенберг сформулировал принцип неопределенности, заключающийся в принципиальной невозможности одновременно точно определить положение микрочастицы в пространстве и ее импульс:

Δpx · Δ x h / 2π,

где Δpx = m Δvx x - неопределенность (ошибка в определении) импульса микрообъекта по координате х ; Δx - неопределенность (ошибка в определении) положения микрообъекта по этой координате.

Таким образом, чем точнее определена скорость, тем меньше известно о местоположении частицы, и наоборот.

Поэтому для микрочастицы (в данном случае электрона) становится неприемлемым понятие о траектории движения, поскольку оно связано с конкретными координатами и импульсом частицы. Можно лишь говорить о вероятности обнаружить ее какой-то областях пространства.

Произошел переход от "орбит движения" электронов, введенных Бором, к понятию орбитали – области пространства, где вероятность пребывания электронов максимальна.

3. Строение электронных оболочек.

Электронная оболочка атома область пространства вероятного местонахождения электронов, характеризующихся одинаковым значением главного квантового числа n и, как следствие, располагающихся на близких энергетических уровнях. Число электронов в каждой электронной оболочке не превышает определенного максимального значения.

Электронная оболочка атома это совокупность атомных орбиталей с одинаковым значением главного квантового числа n.

a ) Понятие об атомной орбитали.

Атомная орбиталь это одноэлектронная волновая функция в сферически симметричном электрическом поле атомного ядра, задающаяся главным n , орбитальным l и магнитным m квантовыми числами.

1) Волновая функция - комплексная функция, описывающая состояние квантовомеханической системы. (Атом водорода принимается как простейшая квантовая система. Именно на его основе делаются все вычисления, связанные с волновой функцией.)

Самым важным является физический смысл волновой функции. Он состоит в следующем:

« плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.»

Волновая функция системы А частиц содержит координаты всех частиц: ψ(1,2,...,A, t).

Квадрат модуля волновой функции отдельной частицы |ψ(,t)|2 = ψ*(,t)ψ(,t) дает вероятность обнаружить частицу в момент времени t в точке пространства, описываемой координатами , а именно, |ψ(,t)|2dv ≡ |ψ(x, y, z, t)|2dxdydz это вероятность найти частицу в области пространства объемом dv = dxdydz вокруг точки x, y, z. Аналогично, вероятность найти в момент времени t систему А частиц с координатами 1,2,...,A в элементе объема многомерного пространства дается величиной |ψ(1,2,...,A, t)|2dv1dv2...dvA.

Принцип неопределённости Гейзенберга накладывает некоторые рамки точности расчёта волновой функции.

Значение волновой функции находится путём решения так называемого уравнения Шрёдингера.

2) Уравнение Шрёдингера - уравнение, описывающее изменение в пространстве и во времени чистого (квантового) состояния , задаваемого волновой функцией.

Оно было предложено в 1926 г. немецким физиком Э. Шрёдингером для описания состояния электрона в атоме водорода.

3) Физический смысл волновой функции даёт понять геометрический смысл атомной орбитали, заключающийся в следующем:

«Атомная орбиталь является областью пространства, ограниченная поверхностью равной плотности вероятности или заряда . Плотность вероятности на граничной поверхности выбирают исходя из решаемой задачи, но, обычно, таким образом, чтобы вероятность нахождения электрона в ограниченной области лежала в диапазоне значений 0, 9 - 0,99»

4) Квантовые числа это числа, которые задают форму орбитали, энергию и момент импульса электрона.

· Главное квантовое число n может принимать любые целые положительные значения, начиная с единицы (n = 1,2,3, … ∞) и определяет общую энергию электрона на данной орбитали (энергетический уровень) :

Энергия для n = ∞ соответствует энергии одноэлектронной ионизации для данного энергетического уровня.

· Орбитальное квантовое число (называемое также азимутальным или дополнительным квантовым числом) определяет момент импульса электрона и может принимать целые значения от 0 до n - 1 (l = 0,1, …, n - 1). Момент импульса при этом задаётся соотношением

Атомные орбитали принято называть по буквенному обозначению их орбитального числа:

Буквенные обозначения атомных орбиталей произошли от описания спектральных линий в атомных спектрах: s (sharp ) - резкая серия в атомных спектрах, p (principal )- главная, d (diffuse ) - диффузная, f (fundamental ) - фундаментальная.

· Магнитное квантовое число ml

Движение электрона по замкнутой орбите вызывает появление магнитного поля. Состояние электрона, обусловленное орбитальным магнитным моментом электрона (в результате его движения по орбите), характеризуется третьим квантовым числом – магнитным ml. Это квантовое число характеризует ориентацию орбитали в пространстве, выражая проекцию орбитального момента импульса на направление магнитного поля.

Соответственно ориентации орбитали относительно направления вектора напряжённости внешнего магнитного поля, магнитное квантовое число может принимать значения любых целых чисел, как положительных, так и отрицательных, от – l до +l, включая 0, т. е. всего (2l + 1) значений. Например, при l = 0, ml = - 1, 0, +1.

Таким образом, ml характеризует величину проекции вектора орбитального момента количества движения на выделенное направление. Например, p-орбиталь в магнитном поле может ориентироваться в пространстве в 3-х различных положениях. [ 9. 55]

5) Оболочки.

Электронные оболочки обозначаются буквами K, L, M, N, O, P, Q или цифрами от 1 до 7. Подуровни оболочек обозначаются буквами s, p, d, f, g, h, i или цифрами от 0 до 6. Электроны внешних оболочек обладают большей энергией, и, по сравнению с электронами внутренних оболочек, находятся дальше от ядра, что делает их более важными в анализе поведения атома в химических реакциях и в роли проводника, так как их связь с ядром слабее и легче разрывается.

6) Подуровни.

Каждая оболочка состоит из одного или нескольких подуровней, каждый из которых состоит из атомных орбиталей. К примеру, первая оболочка (K) состоит из одного подуровня «1s». Вторая оболочка (L) состоит из двух подуровней, 2s и 2p. Третья оболочка - из «3s», «3p» и «3d».

Для полного объяснения строения электронных оболочек необходимо выделить следующие 3 очень важных положения:

1) Принцип Паули.

Он был сформулирован швейцарским физиком В. Паули в 1925. Он заключается в следующем:

В атоме не может быть 2-х электронов, обладающих одинаковыми свойствами.

На самом деле, данный принцип более фундаментален. Он применим ко всем фермионам.

2) Принцип наименьшей энергии.

В атоме каждый электрон располагается так, чтобы его энергия была минимальна (что отвечает наибольшей связи его с ядром).

Т. к. энергия электрона в основном состоянии определяется главным квантовым числом n и побочным квантовым числом l, то сначала заполняются те подуровни, для которых сумма значений квантовых чисел n и l является наименьшей.

Исходя из этого впервые в 1961 году сформулировал общее положение, гласящее, что:

Электрон занимает в основном состоянии уровень не с минимальным значением n , а с наименьшем значением суммы n + l .

3) Правило Гунда.

При данном значении l (т. е. в пределах определённого подуровня) электроны располагаются таким образом, чтобы суммарный спин был максимальным.

Если, например, в трёх p-ячейках атома азота необходимо распределить три электрона, то они будут располагаться каждый в отдельной ячейке, т. е. размещаться на трёх разных p-орбиталях :

Выводы :

1) Движение и свойства электрона нельзя описать классическими законами механики и электродинамики. Электрон можно описать только в рамках квантовой физики.

2) Электрон не имеет чёткой орбиты вращения. Вокруг ядра существует электронное «облако», где электрон находится в любой точке пространства в любой момент времени.

3) Электрон обладает свойствами частицы и волны.

4) Существуют разные физико-математические методы описания характеристик электрона.

5) Атомные орбитали, каждая из которых состоит не более, чем из 2-х электронов, составляют электронную оболочку атома, электроны которой участвуют в образовании межатомных связей в молекулах.

Заключение.

В школе на начальном этапе не полностью раскрывают реальное представление о строении атома, электрона. Чтобы лучше узнать его строение, необходимо изучать дополнительную литературу. И у кого эта тема вызывает интерес, у того есть все возможности, чтобы углубить свои знания, и даже внести свой вклад в познание микрочастиц.

Первоначальных знаний о законах физики недостаточно для того, чтобы в полной мере описать объекты микромира, в данном случае – электроны.

Без понимания основ мироздания, фундаментальных понятий микромира, невозможно понять окружающий нас макро – и мегамир.

Список литературы

1. Википедия. Статья «Атомная орбиталь».

2. Википедия. «Волновая функция».

3. Википедия. Статья «Открытие электрона».

4. Википедия. Статья «Постулаты Бора».

5. Википедия. «Уравнение Шрёдингера».

6. Википедия. Статья «Электрон».

7. , . Хрестоматия по физике: учебное пособие для учащихся» стр.168: Из статьи Н. Бора «О строении атома и молекул». Часть первая. «Связывание электронов положительным ядром».

8. Кафедра МИТХТ. Основы строения вещества.

9. , . Начала химии.

Приложение 1

1. Сэр Джозеф Джон Томсон (18 декабря 1856 - 30 августа 1940) - английский физик, открывший электрон, лауреат Нобелевской премии по физике 1906 года. Большинство работ его посвящено явлениям электрическим, в последнее же время особенно прохождению электричества через газы исследованию лучей Рентгена и Беккереля.

2. Чарлз Томсон Риз Вильсон (14 февраля 1869, Гленкорс - 15 ноября 1959, Карлопс, пригород Эдинбурга) - шотландский физик, за разработку названной в его честь камеры Вильсона, которая дала «метод визуального обнаружения траекторий электрически заряженных частиц с помощью конденсации пара», Вильсон был удостоен в 1927 г. (совместно с Артуром Комптоном) Нобелевской премии по физике.

3. Эрне́ст Ре́зерфорд (30 августа 1871, Спринг Грув - 19 октября 1937, Кембридж) - британский физик новозеландского происхождения. Известен как «отец» ядерной физики, создал планетарную модель атома. Лауреат Нобелевской премии по химии 1908 года.

4. Нильс Хе́нрик Дави́д Бор (7 октября 1885, Копенгаген - 18 ноября 1962, Копенгаген) - датский физик-теоретик и общественный деятель, один из создателей современной физики. Лауреат Нобелевской премии по физике (1922). Был членом более чем 20 академий наук мира, в том числе иностранным почётным членом АН СССР (1929; членом-корреспондентом - с 1924).

Бор известен как создатель первой квантовой теории атома и активный участник разработки основ квантовой механики. Также он внёс значительный вклад в развитие теории атомного ядра и ядерных реакций, процессов взаимодействия элементарных частиц со средой.

5. Альбе́рт Эйнште́йн 14 марта 1879, Ульм, Вюртемберг, Германия - 18 апреля 1955, Принстон, Нью-Джерси, США) - физик–теоретик, один из основателей современной теоретической физики, лауреат Нобелевской премии по физике 1921 года, общественный деятель-гуманист. Жил в Германии (1879-1893, 1914-1933), Швейцарии (1893-1914) и США (1933-1955). Почётный доктор около 20 ведущих университетов мира, член многих Академий наук, в том числе иностранный почётный член АН СССР (1926). Автор множества книг и статей. Автор важнейших физических теорий: Общая теория относительности, Квантовая теория фотоэффекта и т. д.

6. Раймон, 7-й герцог Брольи , более известный как Луи де Бройль (15 августа 1892, Дьеп - 19 марта 1987, Лувесьен) - французский физик-теоретик, один из основоположников квантовой механики, лауреат Нобелевской премии по физике за 1929 год, член Французской академии наук (с 1933 года) и её непременный секретарь (с 1942 года), член Французской академии (с 1944 года).

Луи де Бройль является автором работ по фундаментальным проблемам квантовой теории. Ему принадлежит гипотеза о волновых свойствах материальных частиц (волны де Бройля или волны материи), положившая начало развитию волновой механики. Он предложил оригинальную интерпретацию квантовой механики, развивал релятивистскую теорию частиц с произвольным спином, в частности фотонов (нейтринная теория света), занимался вопросами радиофизики, классической и квантовой теориями поля, термодинамики и других разделов физики.

7. Ве́рнер Карл Ге́йзенберг (нем. 5 декабря 1901, Вюрцбург - 1 февраля 1976, Мюнхен) - немецкий физик-теоретик, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1932). Член ряда академий и научных обществ мира.

8. Эрвин Ру́дольф Йо́зеф Алекса́ндр Шрё́дингер (12 августа 1887, Вена - 4 января 1961, там же) - австрийский физик-теоретик, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1933). Член ряда академий наук мира, в том числе иностранный член Академии наук СССР (1934).

Шрёдингеру принадлежит ряд фундаментальных результатов в области квантовой теории, которые легли в основу волновой механики: он сформулировал волновые уравнения (стационарное и зависящее от времени уравнения Шрёдингера), разработал волновомеханическую теорию возмущений, получил решения ряда конкретных задач. Шрёдингер предложил оригинальную трактовку физического смысла волновой функции. Он является автором множества работ в различных областях физики: статистической механике и термодинамике, физике диэлектриков, теории цвета, электродинамике, общей теории относительности и космологии; он предпринял несколько попыток построения единой теории поля.

Фермио́н - по современным научным представлениям: элементарные частицы, из которых складывается вещество. К фермионам относят кварки, электрон, мюон, тау-лептон, нейтрино. В физике - частица (или квазичастица) с полуцелым значением спина. Своё название получили в честь физика Энрико Ферми.

Лептоны - фермионами, то есть их спин равен 1/2. Лептоны вместе с кварками составляют класс фундаментальных фермионов - частиц, из которых состоит вещество и у которых, насколько это известно, отсутствует внутренняя структура.

Линейчатый спектр водорода (или Спектральные серии водорода) – набор спектральных линий, которые получаются при переходе электронов с любого из вышележащих стационарных уровней на один нижележащий, являющийся основным для данной серии.

Момент импульса − величина, зависящая от того, сколько массы данного тела вращается, как она распределена относительно оси вращения, и с какой скоростью происходит вращение.

Стационарным состоянием называется состояние квантовой системы, при котором её энергия и другие динамические величины, характеризующие квантовое состояние, не изменяются.

Квантовое состояние - любое возможное состояние, в котором может находиться квантовая система.

В волновой механике описывается волновой функцией.