Определение арифметического корня примеры. Что такое квадратный корень? Порязрядное нахождение значения корня

Рычагом называют твердое тело, которое может вращаться вокруг неподвижной точки.

Неподвижную точку называют точкой опоры.

Хорошо знакомый вам пример рычага - качели (рис. 25.1).

Когда двое на качелях уравновешивают друг друга? Начнем с наблюдений. Вы, конечно, замечали, что двое людей на качелях уравновешивают друг друга, если у них примерно одинаковый вес и они находятся примерно на одинаковом расстоянии от точки опоры (рис. 25.1, а).

Рис. 25.1. Условие равновесия качелей: а - люди равного веса уравновешивают друг друга, когда сидят на равных расстояниях от точки опоры; б - люди разного веса уравновешивают друг друга, когда более тяжелый сидит ближе к точке опоры

Если же эти двое сильно отличаются по весу, они уравновешивают друг друга только при условии, что более тяжелый сидит намного ближе к точке опоры (рис. 25.1, б).

Перейдем теперь от наблюдений к опытам: найдем на опыте условия равновесия рычага.

Поставим опыт

Опыт показывает, что грузы равного веса уравновешивают рычаг, если они подвешены на одинаковых расстояниях от точки опоры (рис. 25.2, а).

Если же грузы имеют различный вес, то рычаг находится в равновесии, когда более тяжелый груз находится во столько раз ближе к точке опоры, во сколько раз его вес больше, чем вес легкого груза (рис. 25.2, б, в).

Рис. 25.2. Опыты по нахождению условия равновесия рычага

Условие равновесия рычага. Расстояние от точки опоры до прямой, вдоль которой действует сила, называют плечом этой силы. Обозначим F 1 и F 2 силы, действующие на рычаг со стороны грузов (см. схемы в правой части рис. 25.2). Плечи этих сил обозначим соответственно l 1 и l 2 . Наши опыты показали, что рычаг находится в равновесии, если приложенные к рычагу силы F 1 и F 2 стремятся вращать его в противоположных направлениях, причем модули сил обратно пропорциональны плечам этих сил:

F 1 /F 2 = l 2 /l 1 .

Это условие равновесия рычага было установлено на опыте Архимедом в 3-м веке до н. э.

Условие равновесия рычага вы сможете изучить на опыте в лабораторной работе № 11.

Муниципальное бюджетное общеобразовательное учреждение
Михейковская средняя школа
Ярцевского района Смоленской области
Урок по теме
«Простые механизмы.
Применение закона равновесия
рычага к блоку»
7 класс
Составил и провел
учитель физики высшей категории
Лавнюженков Сергей Павлович

2016 – 2017 уч.год

Цели урока (планируемые результаты обучения):
Личностные:
­ формирование умений управлять своей учебной деятельностью;
­ формирование интереса к физике при анализе физических явлений;
­ формирование мотивации постановкой познавательных задач;
­ формирование умения вести диалог на основе равноправных отношений и взаимного уважения;
­ развитие самостоятельности в приобретении новых знаний и практических умений;
­ развитие внимания, памяти, логического и творческого мышления;
­ осознание учащимися своих знаний;
Метапредметные:
­ развитие умения генерировать идеи;
­ развивать умение определять цели и задачи деятельности;
­ проводить экспериментальное исследование по предложенному плану;
­ на основании результатов эксперимента формулировать вывод;
­ развивать коммуникативные навыки при организации работы;
­ самостоятельно оценивать и анализировать собственную деятельность с позиции полученных
результатов;
­ использовать различные источники для получения информации.
Предметные:
­ формирование представления о простых механизмах;
­ формирование умения распознавать рычаги, блоки, наклонные плоскости, вороты, клины;
­ дают ли простые механизмы выигрыш в силе;
­ формирование умения планировать и проводить эксперимент, на основании результатов
эксперимента формулировать вывод.
Ход урока

п. п
1
2
3
4
5
6
7
8
9
Деятельность учителя
Деятельность учащегося
Примечания
Организационный этап
Подготовка к уроку
Этап повторения и проверки
усвоения пройденного материала
Работа с картинками, работа в
парах – устный рассказ
По плану,
взаимопроверка
знаний
Этап актуализации знаний,
целеполагания
этап: помощь и контроль над работой
учащихся
Физминутка
Организационно­деятельностный
этап: практическая работа,
актуализация и целеполагание
Этап практического закрепления
полученных знаний: решение задач
Этап закрепления пройденного
материала
Введение понятия «простые
механизмы», по
Работа с учебником, составление
схемы
Самооценка
Физические упражнения
­ Сбор установки
­ Введение понятия «рычаг»,
постановка целей
­ Введение понятия «плечо силы»
­ Экспериментальное
подтверждение правила равновесия
рычага
Самооценка
Решают задачи
Взаимопроверка
Отвечают на вопросы
Этап обсуждения домашнего задания
Записывают домашнее задание

10
Этап рефлексии:
предлагается ученикам выделить
новое, интересное, трудное в уроке
Делятся своими впечатлениями в
устной и письменной форме
Учитель:
Сегодня на уроке мы заглянем в мир механики, будем учиться сравнивать, анализировать. Но
прежде выполним ряд заданий, которые помогут раскрыть таинственную дверь шире и показать всю
красоту такой науки, как механика.
На экране несколько картинок:
Что выполняют эти люди? (механическую работу)
­ Египтяне строят пирамиду (рычаг);
­ Человек поднимает (с помощью ворота) из колодца воду;
­ Люди катят бочку на корабль (наклонная плоскость);
­ Человек поднимает груз (блок).
Учитель:

Составьте по плану рассказ:
1. Какие условия необходимы для совершения механической работы?
2. Механическая работа – это …………….
3. Условное обозначение механической работы
4. Формула работы …
5. Что принято за единицу измерения работы?
6. Как и в честь какого ученого она названа?
7. В каких случаях работа положительная, отрицательная или равна нулю?
Учитель:
А теперь посмотрим на эти картинки ещё раз и обратим внимание, как эти люди выполняют работу?
(люди используют длинную палку, ворот, устройство наклонной плоскости, блок)
Учитель:

Учащиеся: Простые механизмы
Учитель:

Правильно! Простые механизмы. Как вы думаете по какой теме на уроке мы будем с Вами
Как можно назвать одним словом данные приспособления?
сегодня говорить?
Учащиеся: О простых механизмах.
Учитель: Правильно. Темой нашего урока будут простые механизмы (запись темы урока в тетради,
слайд с темой урока)
Поставим перед собой цели урока:
Вместе с детьми:
­ изучить, что такое простые механизмы;
­ рассмотреть, виды простых механизмов;
­ условие равновесия рычага.
Учитель: Ребята, а как вы думаете для чего применяют простые механизмы?
Учащиеся: Их используют для уменьшения силы, которую мы прикладываем, т.е. для её
преобразования.
Учитель: Простые механизмы имеются и в быту, и во всех сложных заводских машинах и т.д.
Ребята, в каких бытовых приборах и устройствах имеются простые механизмы.
Учащиеся: Весы рычажные, ножницы, мясорубка, нож, топор, пила, и т.д.
Учитель: Какой простой механизм есть у подъемного крана.
Учащиеся: Рычаг (стрела), блоки.

Учитель: Сегодня мы более подробнее остановимся на одном из видов простых механизмов.
Он находится на столе. Что это за механизм?
Учащиеся: Это рычаг.
Подвесим грузики на одно из плеч рычага и, используя другие грузики, уравновесим рычаг.
Посмотрим, что получилось. Мы видим, что плечи у грузиков отличаются друг от друга.
Давайте качнем одно из плеч рычага. Что мы видим?
Учащиеся: Покачавшись, рычаг возвращается в положение равновесия.
Учитель: Что называется рычагом?
Учащиеся: Рычаг – это твердое тело, которое может вращаться вокруг неподвижной оси.
Учитель: Когда рычаг находится в равновесии?
Учащиеся:
1 вариант: одинаковое количество грузов на одинаковом расстоянии от оси вращения;
2 вариант: больше груз – меньше расстояние от оси вращения.
Учитель: Как называется такая зависимость в математике?
Учащиеся: Обратно пропорциональная.
Учитель: С какой силой грузы действуют на рычаг?
Учащиеся: Весом тела вследствие притяжения Земли. P = Fтяж= F
F 
1
F
2
l
2
l
1
где F1 – модуль первой силы;
F2 – модуль второй силы;
l1 – плечо первой силы;
l2 – плечо второй силы.
Учитель: Это правило установил Архимед в III веке до нашей эры.
Задача: При помощи лома рабочий поднимает ящик массой 120кг. Какую силу он
прикладывает к большему плечу рычага, если длина этого плеча 1,2 м, а меньшего плеса 0,3 м.
Какой будет выигрыш в силе? (Ответ: Выигрыш в силе равен 4)
Решение задач (самостоятельно с последующей взаимопроверкой).
1. Первая сила равна 10 Н, а плечо этой силы 100 см. Чему равна вторая сила, если ее плечо
равно 10 см? (Ответ: 100 Н)
2. Рабочий с помощью рычага поднимает груз весом 1000 Н, при этом он прилагает силу 500 Н.
Каково плечо большей силы, если плечо меньшей силы 100 см? (Ответ: 50 см)
Подведение итогов.
Какие механизмы называются простыми?
Какие виды простых механизмов вы знаете?
Что такое рычаг?
Что такое плечо силы?
Каково правило равновесия рычага?
Какое значение имеют простые механизмы в жизни человека?
Д/з
1. Читать параграф.
2. Перечислите простые механизмы, которые обнаружите дома и те, которые человек
использует в повседневной жизни, записав их в таблицу:
Простой механизм в быту, в технике
Вид простого механизма
3. Дополнительно. Подготовить сообщение об одном простом механизме, применяемом в быту,

Довольно часто при решении задач мы сталкиваемся с большими числами, из которых надо извлечь квадратный корень . Многие ученики решают, что это ошибка, и начинают перерешивать весь пример. Ни в коем случае нельзя так поступать! На то есть две причины:

  1. Корни из больших чисел действительно встречаются в задачах. Особенно в текстовых;
  2. Существует алгоритм, с помощью которого эти корни считаются почти устно.

Этот алгоритм мы сегодня и рассмотрим. Возможно, какие-то вещи покажутся вам непонятными. Но если вы внимательно отнесетесь к этому уроку, то получите мощнейшее оружие против квадратных корней .

Итак, алгоритм:

  1. Ограничить искомый корень сверху и снизу числами, кратными 10. Таким образом, мы сократим диапазон поиска до 10 чисел;
  2. Из этих 10 чисел отсеять те, которые точно не могут быть корнями. В результате останутся 1—2 числа;
  3. Возвести эти 1—2 числа в квадрат. То из них, квадрат которого равен исходному числу, и будет корнем.

Прежде чем применять этот алгоритм работает на практике, давайте посмотрим на каждый отдельный шаг.

Ограничение корней

В первую очередь надо выяснить, между какими числами расположен наш корень. Очень желательно, чтобы числа были кратны десяти:

10 2 = 100;
20 2 = 400;
30 2 = 900;
40 2 = 1600;
...
90 2 = 8100;
100 2 = 10 000.

Получим ряд чисел:

100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

Что нам дают эти числа? Все просто: мы получаем границы. Возьмем, например, число 1296. Оно лежит между 900 и 1600. Следовательно, его корень не может быть меньше 30 и больше 40:

[Подпись к рисунку]

То же самое — с любым другим числом, из которого можно найти квадратный корень. Например, 3364:

[Подпись к рисунку]

Таким образом, вместо непонятного числа мы получаем вполне конкретный диапазон, в котором лежит исходный корень. Чтобы еще больше сузить область поиска, переходим ко второму шагу.

Отсев заведомо лишних чисел

Итак, у нас есть 10 чисел — кандидатов на корень. Мы получили их очень быстро, без сложных размышлений и умножений в столбик. Пора двигаться дальше.

Не поверите, но сейчас мы сократим количество чисел-кандидатов до двух — и снова без каких-либо сложных вычислений! Достаточно знать специальное правило. Вот оно:

Последняя цифра квадрата зависит только от последней цифры исходного числа .

Другими словами, достаточно взглянуть на последнюю цифру квадрата — и мы сразу поймем, на что заканчивается исходное число.

Существует всего 10 цифр, которые могут стоять на последнем месте. Попробуем выяснить, во что они превращаются при возведении в квадрат. Взгляните на таблицу:

1 2 3 4 5 6 7 8 9 0
1 4 9 6 5 6 9 4 1 0

Эта таблица — еще один шаг на пути к вычислению корня. Как видите, цифры во второй строке оказались симметричными относительно пятерки. Например:

2 2 = 4;
8 2 = 64 → 4.

Как видите, последняя цифра в обоих случаях одинакова. А это значит, что, например, корень из 3364 обязательно заканчивается на 2 или на 8. С другой стороны, мы помним ограничение из предыдущего пункта. Получаем:

[Подпись к рисунку]

Красные квадраты показывают, что мы пока не знаем этой цифры. Но ведь корень лежит в пределах от 50 до 60, на котором есть только два числа, оканчивающихся на 2 и 8:

[Подпись к рисунку]

Вот и все! Из всех возможных корней мы оставили всего два варианта! И это в самом тяжелом случае, ведь последняя цифра может быть 5 или 0. И тогда останется единственный кандидат в корни!

Финальные вычисления

Итак, у нас осталось 2 числа-кандидата. Как узнать, какое из них является корнем? Ответ очевиден: возвести оба числа в квадрат. То, которое в квадрате даст исходное число, и будет корнем.

Например, для числа 3364 мы нашли два числа-кандидата: 52 и 58. Возведем их в квадрат:

52 2 = (50 +2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;
58 2 = (60 − 2) 2 = 3600 − 2 · 60 · 2 + 4 = 3364.

Вот и все! Получилось, что корень равен 58! При этом, чтобы упростить вычисления, я воспользовался формулой квадратов суммы и разности. Благодаря чему даже не пришлось умножать числа в столбик! Это еще один уровень оптимизации вычислений, но, разумеется, совершенно не обязательный:)

Примеры вычисления корней

Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

[Подпись к рисунку]

Для начала выясним, между какими числами лежит число 576:

400 < 576 < 900
20 2 < 576 < 30 2

Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

Осталось возвести каждое число в квадрат и сравнить с исходным:

24 2 = (20 + 4) 2 = 576

Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

900 < 1369 < 1600;
30 2 < 1369 < 40 2;

Смотрим на последнюю цифру:

1369 → 9;
33; 37.

Возводим в квадрат:

33 2 = (30 + 3) 2 = 900 + 2 · 30 · 3 + 9 = 1089 ≠ 1369;
37 2 = (40 − 3) 2 = 1600 − 2 · 40 · 3 + 9 = 1369.

Вот и ответ: 37.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

2500 < 2704 < 3600;
50 2 < 2704 < 60 2;

Смотрим на последнюю цифру:

2704 → 4;
52; 58.

Возводим в квадрат:

52 2 = (50 + 2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;

Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

3600 < 4225 < 4900;
60 2 < 4225 < 70 2;

Смотрим на последнюю цифру:

4225 → 5;
65.

Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

65 2 = (60 + 5) 2 = 3600 + 2 · 60 · 5 + 25 = 4225;

Все правильно. Записываем ответ.

Заключение

Увы, не лучше. Давайте разберемся в причинах. Их две:

  • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
  • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

Площадь квадратного участка земли равна 81 дм². Найти его сторону. Предположим, что длина стороны квадрата равна х дециметрам. Тогда площадь участка равна х ² квадратным дециметрам. Так как по условию эта площадь равна 81 дм², то х ² = 81. Длина стороны квадрата — положительное число. Положительным числом, квадрат которого равен 81, является число 9. При решении задачи требовалось найти число х, квадрат которого равен 81, т. е. решить уравнение х ² = 81. Это уравнение имеет два корня: x 1 = 9 и x 2 = — 9, так как 9² = 81 и (- 9)² = 81. Оба числа 9 и — 9 называют квадратными корнями из числа 81.

Заметим, что один из квадратных корней х = 9 является положительным числом. Его называют арифметическим квадратным корнем из числа 81 и обозначают √81, таким образом √81 = 9.

Арифметическим квадратным корнем из числа а называется неотрицательное число, квадрат которого равен а .

Например, числа 6 и — 6 являются квадратными корнями из числа 36. При этом число 6 является арифметическим квадратным корнем из 36, так как 6 — неотрицательное число и 6² = 36. Число — 6 не является арифметическим корнем.

Арифметический квадратный корень из числа а обозначается так: √а.

Знак называется знаком арифметического квадратного корня; а — называется подкоренным выражением. Выражение √а читается так: арифметический квадратный корень из числа а. Например, √36 = 6, √0 = 0, √0,49 = 0,7. В тех случаях, когда ясно, что речь идет об арифметическом корне, кратко говорят: «корень квадратный из а «.

Действие нахождения квадратного корня из числа называют извлечением квадратного корня. Это действие является обратным к возведению в квадрат.

Возводить в квадрат можно любые числа, но извлекать квадратные корни можно не из любого числа. Например, нельзя извлечь квадратный корень из числа — 4. Если бы такой корень существовал, то, обозначив его буквой х , мы получили бы неверное равенство х² = — 4, так как слева стоит неотрицательное число, а справа отрицательное.

Выражение √а имеет смысл только при а ≥ 0. Определение квадратного корня можно кратко записать так: √а ≥ 0, (√а )² = а . Равенство (√а )² = а справедливо при а ≥ 0. Таким образом, чтобы убедиться в том, что квадратный корень из неотрицательного числа а равен b , т. е. в том, что √а =b , нужно проверить, что выполняются следующие два условия: b ≥ 0, b ² = а.

Квадратный корень из дроби

Вычислим . Заметим, что √25 = 5, √36 = 6, и проверим выполняется ли равенство .

Так как и , то равенство верно. Итак, .

Теорема: Если а ≥ 0 и b > 0, то т. е. корень из дроби равен корню из числителя, деленному на корень из знаменателя. Требуется доказать, что: и .

Так как √а ≥0 и √b > 0, то .

По свойству возведения дроби в степень и определению квадратного корня теорема доказана. Рассмотрим несколько примеров.

Вычислить , по доказанной теореме .

Второй пример: Доказать, что , если а ≤ 0, b < 0. .

Еще примерчик: Вычислить .

.

Преобразование квадратных корней

Вынесение множителя из-под знака корня. Пусть дано выражение . Если а ≥ 0 и b ≥ 0, то по теореме о корне из произведения можно записать:

Такое преобразование называется вынесение множителя из под знака корня. Рассмотрим пример;

Вычислить при х = 2. Непосредственная подстановка х = 2 в подкоренное выражение приводит к сложным вычислениям. Эти вычисления можно упростить, если вначале вынести из-под знака корня множители: . Подставив теперь х = 2, получим:.

Итак, при вынесении множителя из-под знака корня представляют подкоренное выражение в виде произведения, в котором один или несколько множителей являются квадратами неотрицательных чисел. Затем применяют теорему о корне из произведения и извлекают корень из каждого множителя. Рассмотрим пример: Упростить выражение А = √8 + √18 — 4√2 вынося в первых двух слагаемых множители из-под знака корня, получим:. Подчеркнем, что равенство справедливо только при а ≥ 0 и b ≥ 0. если же а < 0, то .

Ученики всегда спрашивают: «Почему нельзя пользоваться калькулятором на экзамене по математике? Как извлечь корень квадратный из числа без калькулятора?» Попробуем ответить на этот вопрос.

Как же извлечь корень квадратный из числа без помощи калькулятора?

Действие извлечения корня квадратного обратно действию возведения в квадрат.

√81= 9 9 2 =81

Если из положительного числа извлечь корень квадратный и результат возвести в квадрат, получим то же число.

Из небольших чисел, являющихся точными квадратами натуральных чисел, например 1, 4, 9, 16, 25, …,100 квадратные корни можно извлечь устно. Обычно в школе учат таблицу квадратов натуральных чисел до двадцати. Зная эту таблицу легко извлечь корни квадратные из чисел 121,144, 169, 196, 225, 256, 289, 324, 361, 400. Из чисел больших 400 можно извлекать методом подбора используя, некоторые подсказки. Давайте попробуем на примере рассмотреть этот метод.

Пример: Извлечь корень из числа 676 .

Замечаем, что 20 2 = 400, а 30 2 = 900, значит 20 < √676 < 900.

Точные квадраты натуральных чисел оканчиваются цифрами 0; 1; 4; 5; 6; 9.
Цифру 6 дают 4 2 и 6 2 .
Значит, если из 676 извлекается корень, то это либо 24, либо 26.

Осталось проверить: 24 2 = 576, 26 2 = 676.

Ответ: √676 = 26 .

Еще пример: √6889 .

Так как 80 2 = 6400, а 90 2 = 8100, то 80 < √6889 < 90.
Цифру 9 дают 3 2 и 7 2 , то √6889 равен либо 83, либо 87.

Проверяем: 83 2 = 6889.

Ответ: √6889 = 83 .

Если затрудняетесь решать методом подбора, то можно подкоренное выражение разложить на множители.

Например, найти √893025 .

Разложим число 893025 на множители, вспомните, вы делали это в шестом классе.

Получаем: √893025 = √3 6 ∙5 2 ∙7 2 = 3 3 ∙5 ∙7 = 945.

Еще пример: √20736 . Разложим число 20736 на множители:

Получаем √20736 = √2 8 ∙3 4 = 2 4 ∙3 2 = 144.

Конечно, разложение на множители требует знания признаков делимости и навыков разложения на множители.

И, наконец, есть же правило извлечение корней квадратных . Давайте познакомимся с этим правилом на примерах.

Вычислите √279841 .

Чтобы извлечь корень из многоцифрового целого числа, разбиваем его справа налево на грани, содержащие по 2 цифры (в левой крайней грани может оказаться и одна цифра). Записываем так 27’98’41

Чтобы получить первую цифру корня (5), извлекаем квадратный корень из наибольшего точного квадрата, содержащегося в первой слева грани (27).
Потом вычитают из первой грани квадрат первой цифры корня (25) и к разности приписывают (сносят) следующую грань (98).
Слева от полученного числа 298 пишут удвоенную цифру корня (10), делят на нее число всех десятков раннее полученного числа (29/2 ≈ 2), испытывают частное (102 ∙2 = 204 должно быть не больше 298) и записывают (2) после первой цифры корня.
Потом вычитают от 298 полученное частное 204 и к разности (94) приписывают (сносят) следующую грань (41).
Слева от полученного числа 9441 пишут удвоенное произведение цифр корня (52 ∙2 = 104), делят на это произведение число всех десятков числа 9441 (944/104 ≈ 9), испытывают частное (1049 ∙9 = 9441) должно быть 9441 и записывают его (9) после второй цифры корня.

Получили ответ √279841 = 529.

Аналогично извлекают корни из десятичных дробей . Только подкоренное число надо разбивать на грани так, чтобы запятая была между гранями.

Пример . Найдите значение √0,00956484.

Только надо помнить, что если десятичная дробь имеет нечетное число десятичных знаков, из нее точно квадратный корень не извлекается .

Итак, теперь вы познакомились с тремя способами извлечения корня. Выбирайте тот, который вам больше подходит и практикуйтесь. Чтобы научиться решать задачи, их надо решать. А если у Вас возникнут вопросы, записывайтесь на мои уроки .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.