Интерференция волн. Принцип суперпозиции для волн. Когерентные волны

Cтраница 1


Когерентные световые волны можно получить, разделив (с помощью отражений или преломлений) волну, излучаемую одним не - точником, на две части. Если заставить эти две волны пройти разные оптические пути, а потом наложить их друг на друга, наблюдается интерференция. Разность оптических длин путей, проходимых интерферирующими волнами, не должна быть очень большой, так как складывающиеся колебания должны принадлежать одному и тому же результирующему цугу волн. Если эта разность будет, порядка 1 м, належатся колебания, соответствующие разным цугам, и разность фаз между ними будет непрерывно меняться хаотическим образом.  

Когерентные световые волны можно получить, разделив (с помощью отражений или преломлений) волну, излучаемую одним источником, на две части. Если заставить эти две волны пройти разные оптические пути, а потом наложить их друг на друга, наблюдается интерференция. Разность оптических длин путей, проходимых интерферирующими волнами, не должна быть очень большой, так как складывающиеся колебания должны принадлежать одному и тому же результирующему цугу волн. Если эта разность будет порядка 1 м, належатся колебания, соответствующие разным цугам, и разность фаз между ними будет непрерывно меняться хаотическим образом.  

Липпмана когерентные световые волны, взаимно усиливая друг друга, дадут изображение объекта в исходном положении.  

Интерференция света при отражении двумя параллельными плоскостями.| Наблюдение полос равного наклона.  

Две когерентные световые волны можно получить в результате отражения света от двух поверхностей плоскопараллельной прозрачной пластинки (или пленки), см. рис. 6.21. В каждую точку наблюдения приходят волны, разность хода которых будет такой же, как от источников Si и S2 - изображений S, создаваемых верхней и нижней поверхностями. Интерференционные полосы на экране В имеют вид концентрических колец с центром в точке О. Расстояние между кольцами уменьшается при удалении от центра.  

Изменение разности хода при смещении плоскости наблюдения, находящейся на конечном расстоянии от объекта.| Наблюдаемая иа конечном расстоянии дифракция света от большого числа хаотически расположенных малых отверстий в экране, закрывающем отверстие Т.  

Все эти отверстия испускают когерентные световые волны. Поскольку отверстия очень малы, пятна дифрагировавшего на них света в плоскости наблюдения Е2 велики. Вследствие интерференции световых волн в плоскости Е2 будет наблюдаться спекл-структура, состоящая из ярких мелких пятнышек.  

В результате такого отражения возникают когерентные световые волны, которые при наложении дают локализованные интерференционные картины. Место локализации зависит от формы пленок, условий наблюдения и освещения.  


Одна часть пучка отклоняется зеркалом и образует плоское так называемое сравнительное волновое поле, а другая часть пучка освещает объект. Поэтому в качестве источника света необходим лазер, который в отличие от других источников световых волн посылает монохроматические когерентные световые волны.  

Явление взаимного усиления или ослабления когерентных волн называется интерференцией. В результате интерференции на освещаемой поверхности образуются чередующиеся светлые и темные области, соответствующие усилению или ослаблению света. Пространство, в точках которого происходит наложение когерентных волн, называется интерференционным полем. Но для наблюдения интерференции света необходимы когерентные световые волны, а два независимых источника света, например две одинаковые лампы, не когерентны. Излучаемые ими световые волны представляют собой совокупность большого количества волн, испускаемых атомами и молекулами.  

Страницы:      1

Когерентностью называется согласованное протекание нескольких колебательных или волновых процессов. Степень согласования может быть различной. Соответственно вводится понятие степени когерентности двух волн.

Пусть в данную точку пространства приходят две световые волны одинаковой частоты, которые возбуждают в этой точке колебания одинакового направления (обе волны поляризованы одинаковым образом):

Е = А 1 соs(wt + a 1),

Е = A 2 cos(wt + a 2), тогда амплитуда результирующего колебания

А 2 = А 1 2 +А 2 2 + 2А 1 А 2 соsj, (1)

где j = a 1 - a 2 = const.

Если частоты колебаний в обеих волнах w одинаковы, а разность фаз j возбуждаемых колебаний остается постоянной во времени, то такие волны называются когерентными.

Приналожении когерентных волн они дают устойчивое колебание с неизменной амплитудой А = соnst, определяемой выражением (1) и в зависимости от разности фаз колебаний лежащей в пределах |а 1 –А 2 ê £ A £ а 1 +А 2.

Т.о., когерентные волны при интерференции друг с другом дают устойчивое колебание с амплитудой не больше суммы амплитуд интерферирующих волн.

Если j = p, тогда соsj = -1 и а 1 = А 2 , a амплитуда суммарного колебания равна нулю, и интерферирующие волны полностью гасят друг друга.

В случае некогерентных волн j непрерывно изменяется, принимая с равной вероятностью любые значения, вследствие чего среднее по времени значение t = 0. Поэтому

А 2 > = <А 1 2 > + <А 2 2 >,

откуда интенсивность, наблюдаемая при наложении некогерентных волн, равна сумме интенсивностей, создаваемых каждой из волн в отдельности:

I = I 1 + I 2 .

В случае когерентных волн, соsj имеет постоянное во времени значение (но свое для каждой точки пространства), так что

I = I 1 + I 2 + 2Ö I 1 × I 2 cosj (2)

В тех точках пространства, для которых соsj >0, I> I 1 +I 2 ; в точках, для которых соsj<0, IПри наложении когерентных световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других - минимумы интенсивности. Это явление называется интерференцией волн. Особенно отчетливо проявляется интерференция в том случае, когда интенсивности обеих интерферирующих волн одинаковы: I 1 =I 2 . Тогда согласно (2) в максимумах I = 4I 1 , в минимумах же I = 0. Для некогерентных волн при том же условии получается всюду одинаковая интенсивность I = 2I 1 .

Все естественные источники света (Солнце, лампочки накаливания и т.д.) не когерентны.

Некогерентность естественных источников света обусловлена тем, что излучение светящегося тела слагается из волн, испускаемых многими атомами. Отдельные атомы излучают цуги волн длительностью порядка 10 -8 с и протяженностью около 3 м. Фаза нового цуга никак не связана с фазой предыдущего цуга. В испускаемой телом световой волне излучение одной группы атомов через время порядка 10 -8 с сменяется излучением другой группы, причем фаза результирующей волны претерпевает случайные изменения.

Некогерентными и не могущими интерферировать др. с др. являются волны, испускаемые различными естественными источниками света. А можно ли вообще для света создать условия, при которых наблюдались бы интерференционные явления? Как, пользуясь обычными некогерентными излучателями света, создать взаимно когерентные источники?

Когерентные световые волны можно получить, разделив (с помощью отражений или преломлений) волну, излучаемую одним источником света, на две части, Если заставить эти две волны пройти разные оптические пути, а потом наложить их др. на др., наблюдается интерференция. Разность оптических длин путей, проходимых интерферирующими волнами, не должна быть очень большой, так как складывающиеся колебания должны принадлежать одному и тому же результирующему цугу волн. Если эта разность ³1м, наложатся колебания, соответствующие разным цугам, и разность фаз между ними будет непрерывно изменяться хаотическим образом.

Пусть разделение на две когерентные волны происходит в точке О (рис.2).

До точки Р первая волна проходит в среде показателем преломления n 1 путь S 1 , вторая волна проходит в среде с показателем преломления n 2 путь S 2 . Если в точке О фаза колебания равна wt, то первая волна возбудит в точке Р колебание А 1 соsw(t – S 1 /V 1), а вторая волна -колебание А 2 соsw(t – S 2 /V 2), где V 1 и V 2 - фазовые скорости. Следовательно, разность фаз колебаний, возбуждаемых волнами в точке Р, будет равна

j = w(S 2 /V 2 – S 1 /V 1) = (w/c)(n 2 S 2 – n 1 S 1).

Заменим w/с через 2pn/с = 2p/lо (lо - длина волны в), тогдаj = (2p/lо)D, где (3)

D= n 2 S 2 – n 1 S 1 = L 2 - L 1

есть величина, равная разности оптических длин, проходимых волнами путей, и называется оптической разностью хода.

Из (3) видно, что если оптическая разность хода равна целому числу длин волн в вакууме:

D = ±mlо (m = 0,1,2), (4)

то разность фаз оказывается кратной 2p и колебания, возбуждаемые в точке Р обеими волнами, будут происходить с одинаковой фазой. Т.о., (4) есть условие интерференционного максимума.

Если оптическая разность хода D равна полуцелому числу длин волн в вакууме:

D = ± (m + 1/2)lо (m =0, 1,2, ...) (5)

то j = ± (2m + 1)p, так что колебания в точке Р находятся в противофазе. Следовательно, (5) есть условие интерференционного минимума.

Принцип получения когерентных световых волн разделением волны на две части, проходящие различные пути, может быть практически осуществлен различными способами - с помощью экранов и щелей, зеркал и преломляющих тел.

Впервые интерференционную картину от двух источников света наблюдал в 1802 году английский ученый Юнг. В опыте Юнга (рис.3) свет от точечного источника (малое отверстие S) проходит через две равноудаленные щели (отверстия) А 1 и А 2 , являющиеся как бы двумя когерентными источниками (две цилиндрические волны). Интерференционная картина наблюдается на экране Ё, расположенном на некотором расстоянии l параллельно А 1 А 2 . Начало отсчета выбрано в точке 0, симметричной относительно щелей.

Усиление и ослабление света в произвольной точке Р экрана зависит от оптической разности хода лучей D =L 2 – L 1 . Для получения различимой интерференционной картины расстояние между источниками А 1 А 2 =d должно быть значительно меньше расстояния до экрана l . Расстояние х, в пределах которого образуются интерференционные полосы, значительно меньше l . При этих условиях можно положить S 2 – S 1 » 2l . Тогда S 2 – S 1 » xd/l . Умножив на n,

Подучим D = nxd/l . (6)

Подставив (6) в (4) получим, что максимумы интенсивности будут наблюдаться при значениях х, равных х max = ± ml l/d (m = 0, 1,2,.,.).(7)

Здесь l = l 0 /n - длина волны в среде, заполняющей пространство между источниками и экраном.

Координаты минимумов интенсивности будут:

х min = ±(m +1/2)ll/d (m = 0,1,2,...). (8)

Расстояние между двумя соседними максимумами интенсивности называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами - шириной интерференционной полосы. Из (7) и (8) следует, что расстояние между полосами и ширина полосы имеют одинаковое значение, равное Dх = l l/d. (9)

Измеряя параметры, входящие в (9), можно определить длину волны оптического излучения l. Согласно (9) Dх пропорционально 1/d, поэтому чтобы интерференционная картина была четко различима, необходимо соблюдение упоминавшегося выше условия: d<< l . Главный максимум, соответствующий m = 0, проходит через точку 0. Вверх и вниз от него на равных расстояниях друг от друга располагаются максимумы (минимумы) первого (m =1), второго (m = 2) порядков и т.д.

Такая картина справедлива при освещении экрана монохроматическим светом (l 0 = const). При освещении белым светом интерференционные максимумы (и минимумы) для каждой длины волны будут, согласно формуле (9), смещены друг относительно друга и иметь вид радужных полос. Только для m = 0 максимумы для всех длин волн совпадают, и в середине экрана будет наблюдаться светлая полоса, по обе стороны от которой симметрично расположатся спектрально окрашенные полосы максимумов первого, второго порядков и т д. (ближе к центральной светлой полосе будут находиться зоны фиолетового цвета, дальше – зоны красного цвета).

Интенсивность интерференционных полос не остается постоянной, а изменяется вдоль экрана по закону квадрата косинуса.

Наблюдать интерференционную картину можно с помощью зеркала Френеля, зеркала Лойда, бипризмы Френеля и других оптических устройств, а также при отражении света от тонких прозрачных пленок.

14.ИНТЕРФЕРЕНЦИЯ СВЕТА ПРИ ОТРАЖЕНИИ ОТ ТОНКИХ ПЛАСТИНОК. ПОЛОСЫ РАВНОЙ ТОЛЩИНЫ И РАВНОГО НАКЛОНА. Большой практический интерес представляет интерференция в тонких пластинках и пленках.

Пусть на тонкую плоскопараллельную пластину толщиной b, изготовленную из прозрачного вещества с показателем преломления n, из воздуха (n возд » 1) падает плоская световая волна, которую можно рассматривать как параллельный пучок лучей (рис.4), под углом Q 1 к перпендикуляру.

На поверхности пластины в точке А луч разделится на два параллельных луча света, из которых один образуется за счет отражения от верхней поверхности пластинки, а второй – от нижней поверхности. Разность хода, приобретаемая лучами 1 и 2 до того, как они сойдутся в точке С, равна

D = nS 2 – S 1 ± l 0 /2

где S 1 - длина отрезка АВ, а S 2 – суммарная длина отрезков АО и ОС, а член ± l 0 /2 обусловлен потерей полуволны при отражении света от границы раздела двух сред с различными показателями преломления.

Из геометрического рассмотрения получается формула для оптической разности хода дучей1и2:

D = 2bÖ(n 2 – sin 2 Q 1) = 2bn соsQ 2 ,

а с учетом потери полуволны для оптической разности хода получим

D = 2bÖ(n 2 – sin 2 Q 1) ± l 0 /2 = 2bn соsQ 2 ± l 0 /2. (10)

Вследствие ограничений, накладываемых временной и пространственной когерентностью, интерференция при освещении пластинки например солнечным светом наблюдается только в том случае, если толщина пластинки не превышает нескольких сотых миллиметра. При освещении светом с большей степенью когерентности (например, лазером) интерференция, наблюдается и при отражении от более толстых пластинок или пленок.

Практически интерференцию от плоскопараллельной пластинки наблюдают, поставив на пути отраженных пучков линзу, которая собирает лучи в одной из точек экрана, расположенного в фокальной плоскости линзы (рис.5). Освещенность в произвольной точке Р экрана зависит от значения величины D, определенной по формуле (10). При D = mlо получаются максимумы, при D = (m + 1/2)lо - минимумы интенсивности (m - целое число).

Пусть тонкая плоскопараллельная пластинка освещается рассеянным монохроматическим светом (рис.5). Расположим параллельно пластинке линзу, в фокальной плоскости которой поместим экран. В рассеянном свете имеются лучи самых разнообразных направлений. Лучи, параллельные плоскости рисунка и падающие на пластинку под углом в), после отражения от обеих поверхностей пластинки соберутся линзой в точке Р и создадут в этой точке освещенность, определяемую значением оптической разности хода.

Лучи, идущие в других плоскостях, но падающие на пластинку под тем же углом Q 1 ¢ соберутся линзой в других точках, отстоящих от центра экрана О на такое же расстояние, как и точка Р. Освещенность во всех этих точках будет одинакова. Т.о. лучи, падающие на пластинку под одинаковым углом Q 1 ¢, создадут на экране совокупность одинаково освещенных точек, расположенных по окружности с центром в точке О. Аналогично, лучи, падающие под другим углом Q" 1 создадут на экране совокупность одинаково (но иначе, поскольку А иная) освещенных точек, расположенных по окружности другого радиуса.

В результате на экране возникнет система чередующихся светлых и темных круговых полос с общим центром в точке O ). Каждая полоса образована лучами, падающими на пластинку под одинаковым углом Q 1 . Поэтому получающиеся в описанных условиях интерференционные полосы носят назв. полос равного наклона. При ином расположении линзы относительно пластинки (экран во всех случаях должен совпадать с фокальной плоскостью линзы) форма полос равного наклона будет другой. Роль линзы может играть хрусталик глаза, а экрана - сетчатка глаза.

Согласно (10) положение максимумов зависит от lо. Поэтому в белом свете получается совокупность смещенных др. относительно др. полос, образованных лучами разных цветов, и интерференционная картина приобретает радужную окраску.

Интерференционная картина от тонкого прозрачного клина переменной толщины была изучена еще Ньютоном. Пусть на такой клин (рис.6) падает параллельный пучок лучей.

Рис.6.

Теперь лучи, отразившиеся от разных поверхностей клина, не будут параллельными. Но и в этом случае отраженные волны будут когерентными во всем пространстве над клином , и при любом расстоянии экрана от клина на нем наблюдаться интерференционная картина в виде полос, параллельных вершине клина 0. Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, вследствие чего их называют полосами равной толщины. Практически полосы равной толщины наблюдают, поместив вблизи клина линзу и за ней экран. Роль линзы может играть хрусталик, а роль экрана - сетчатка глаза. При наблюдении в белом свете полосы будут окрашенными, так что поверхность пластинки или пленки представляется имеющей радужную окраску. Такую окраску имеют, например, расплывшиеся по поверхности воды тонкие пленки нефти и масла, а также мыльные пленки. Заметим, что интерференция от тонких пленок может наблюдаться не только в отраженном, но и в проходящем свете.

Классическим примером полос равной толщины являются кольца Ньютона, Они наблюдаются при отражении света от соприкасающихся др. с др. плоскопараллельной толстой стеклянной пластинки и плоско-выпуклой линзы с большим радиусом кривизны (рис.7).

Роль тонкой пленки, от поверхности которой отражаются когерентные волны, играет воздушный зазор между пластинкой и линзой (вследствие большой толщины пластинки и линзы за счет отражений от других поверхностей интерференционные полосы не возникают). При нормальном падении света полосы равной толщины имеют вид концентрических окружностей, при наклонном падении - эллипсов. Найдем радиусы колец Ньютона, получающиеся при нормальном падении света на пластину. В этом случае sinQ 1 = О и D равна удвоенной толщине зазора (предполагается n 0 = 1). Из рис. 7 следует, что

R 2 = (R – b) 2 + r 2 » R 2 – 2Rb + r 2 , (12)

где R - радиус кривизны линзы, r - радиус окружности, всем точкам которой соответствует одинаковый зазор b. Считаем b 2 < 2Rb. Из (12) b = г 2 /2R. Чтобы учесть возникающее при отражении от пластинки изменение фазы на p, нужно к D = 2b = r 2 /R прибавить lо/2. В результате получится

D = r 2 /R + lо/2. (13)

В точках, для которых D = m"lо = 2m"(lо/2), возникают максимумы, в точках, для которых D = (m" + 1/2)lо = (2m"+ 1)(lо/2), - минимумы интенсивности.

Оба условия можно объединить в одно: D = mlо/2, причем четным значениям m будут соответствовать максимумы, а нечетным -минимумы интенсивности. Подставив сюда (13) и разрешив получившееся уравнение относительно r, найдем радиусы светлых и темных колец Ньютона:

r m = ÖRlо(m- 1)/2,(m =1,2,3,...). (14)

Четным m соответствуют радиусы светлых колец, нечетным m - радиусы темных колей. Значению m =1 соответствует г = 0, в этой точке наблюдается минимум интенсивности, обусловленный изменением фазы на p при отражении световой волны от пластинки.

Измеряя расстояния между полосами интерференционной картины для тонких пластин или радиусы колец Ньютона, можно определить длины волн световых лучей и, наоборот, по известной l найти радиус кривизны линзы.

Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны. Следовательно, оптическая разность хода для проходящего и отраженного света отличается на l 0 /2, т.е. максимумам интерференции в отраженном свете соответствуют минимумы в проходящем, и наоборот.

Другим практическим применением интерференции являются прецизионные измерения линейных размеров. Для этого служат приборы, называемые интерферометрами.

Интерферометры также позволяют определять незначительные изменения показателя преломления прозрачных тел (газов, жидкостей и твердых тел) в зависимости от давления, температуры, примесей и т.п.

Когерентностьюназывается согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов, проявляющееся при их сложении.

Пусть в данную точку пространства приходят две световые волны Е 1 и Е 2 одинаковой частоты, которые возбуждают в этой точке колебания одинакового направления (обе волны поляризованы одинаковым образом):

Е 1 = А 1 соs(wt + a 1),

Е 2 = A 2 cos(wt + a 2).

Согласно принципу суперпозиции, напряженность результирующего поля равна Е = Е 1 + Е 2 . Тогда амплитуда А результирующего колебания той же частоты может быть определена из выражения:

А 2 = А 1 2 +А 2 2 + 2А 1 А 2 соsj, (1)

где j = a 1 - a 2 = const.

Если частоты колебаний в обеих волнах w одинаковы а разность фаз j возбуждаемых колебаний остается постоянной во времени, то такие волны называются когерентными. Дляэлектромагнитных волн существует дополнительное ограничение – не дают интерференционной картины когерентные волны ортогональной поляризации.

Приналожении когерентных волн они дают устойчивое колебание с неизменной амплитудойА = соnst, определяемой выражением (1) и в зависимости от разности фаз колебаний лежащей в пределах

|а 1 –А 2 ê £ A £ а 1 +А 2.

Т.о., когерентные волны при интерференции друг с другом дают устойчивое колебание с амплитудой не больше суммы амплитуд интерферирующих волн.

Если j = p, тогда соsj = -1, и А 1 = А 2 , то амплитуда суммарного колебания равна нулю, и интерферирующие волны полностью гасят друг друга.

В случае некогерентных волн j непрерывно изменяется, принимая с равной вероятностью любые значения, вследствие чего среднее по времени значение t = 0. Поэтому слагаемое 2А 1 А 2 соsj в уравнении (1) равно нулю и

<А 2 > = <А 1 2 > + <А 2 2 >,

откуда интенсивность, наблюдаемая при наложении некогерентных волн, равна сумме интенсивностей, создаваемых каждой из волн в отдельности:

В случае когерентных волн, соsj имеет постоянное во времени значение (но свое для каждой точки пространства), так что

I = I 1 + I 2 + 2Ö I 1 × I 2 cosj . (2)

В тех точках пространства, для которых соsj > 0, I> I 1 +I 2 ; в точках, для которых соsj < 0, I

Если имеются отклонения от сформулированных условий когерентности, например, частоты двух складываемых монохроматических волн несколько отличаются, то интерференционная картина может становиться неустойчивой, возникает эффект плывущей картины. Если же частоты складываемых волн совпадают, но разность фаз между ними изменяется со временем, то интерференционная картина, как правило, остается стационарной, но ее контрастность (соотношение интенсивностей соседних максимумов и минимумов) уменьшается.

Все естественные источники света (Солнце, лампочки накаливания и т.д.) не излучают электромагнитных волн одной определенной и строго постоянной частоты, поэтому световые волны, излучаемые любыми независимыми естественными источниками света, всегда некогерентны и, используя два таких источника, невозможно получить интерференцию света.

Некогерентность естественных источников света обусловлена тем, что излучение светящегося тела слагается из волн, испускаемых многими атомами. Отдельные атомы излучают цуги волн длительностью порядка 10 -8 с и протяженностью около 3 м. Фаза нового цуга никак не связана с фазой предыдущего цуга. В испускаемой телом световой волне излучение одной группы атомов через время порядка 10 -8 с сменяется излучением другой группы, причем фаза результирующей волны претерпевает случайные изменения. Когерентность существует только в пределах одного цуга. Средняя продолжительность одного цуга τ называется временем когерентности. Если волна распространяется в однородной среде, то фаза колебаний в какой-либо определенной точке пространства остается постоянной только в течение времени когерентности. За это время волна распространяется на расстояние l ког = Vτ, называемое длиной когерентности (или длиной цуга). Колебания в точках, удаленных друг от друга на расстояниях больших длины когерентности вдоль направления распространения волны, будут некогерентными.

Лазерное излучение характеризуется высокой степенью монохроматичности, т.е излучение происходит на одной определенной и строго постоянной частоте, поэтому можно наблюдать интерференцию световых пучков, излучаемых двумя разными лазерами.

А как можно, пользуясь обычными некогерентными излучателями света, создать взаимно когерентные источники?

Когерентные световые волны можно получить, разделив (с помощью отражений или преломлений) волну, излучаемую одним источником света, на две части. Если заставить эти две волны пройти разные оптические пути, а потом наложить их друга на друга, то наблюдается интерференция. Разность оптических длин путей, проходимых интерферирующими волнами, не должна быть очень большой, так как складывающиеся колебания должны принадлежать одному и тому же результирующему цугу волн. Если эта разность ³ 1м, то будет наблюдаться наложение колебаний, соответствующих разным цугам, разность фаз между которыми будет непрерывно изменяться хаотическим образом, и интерференция не наблюдается.

Пусть разделение на две когерентные волны происходит в точке О (рис.2).

n 2 S 2 P `V

До точки Р первая волна проходит в среде показателем преломления n 1 путь S 1 , вторая волна проходит в среде с показателем преломления n 2 путь S 2 . Если в точке О фаза колебания равна wt, то первая волна возбудит в точке Р колебание А 1 соsw(t – S 1 /V 1), а вторая волна -колебание А 2 соsw(t – S 2 /V 2), где V 1 и V 2 - фазовые скорости волны в первой и второй средах соответственно. Следовательно, разность фаз колебаний, возбуждаемых волнами в точке Р, будет равна

j = w(S 2 /V 2 – S 1 /V 1) = (wc)(n 2 S 2 – n 1 S 1).

Заменим w/с через 2pn/с = 2p/lо, тогда

J = (2p/lо)D, (3)

где D= n 2 S 2 – n 1 S 1 = L 2 - L 1 - величина, равная разности оптических длин, проходимых волнами путей, и называется оптической разностью хода.

Из (3) видно, что если оптическая разность хода равна целому числу длин волн в вакууме:

D = ±mlо (m = 0,1,2,….), (4)

то разность фаз оказывается кратной 2p и колебания, возбуждаемые в точке Р обеими волнами, будут происходить с одинаковой фазой. Таким образом, (4) есть условие интерференционного максимума.

Если оптическая разность хода D равна полуцелому числу длин волн в вакууме:

D = ± (m + 1/2)lо (m =0, 1,2, ...), (5)

то j = ± (2m + 1)p, то есть колебания в точке Р находятся в противофазе. Следовательно, (5) есть условие интерференционного минимума.

Принцип получения когерентных световых волн разделением волны на две части, проходящие различные пути, может быть практически осуществлен различными способами - с помощью экранов и щелей, зеркал и преломляющих тел.

3.Методы наблюдения интерференции света: опыт Юнга, метод зеркал Френеля, бипризма Френеля. Впервые интерференционную картину от двух источников света наблюдал в 1802 году английский ученый Юнг. В опыте Юнга (рис.3) источником света служит ярко освещенная щель S, от которой световая волна падает на две равноудаленные щели А 1 и А 2 , являющиеся двумя когерентными источниками света (две цилиндрические волны). Интерференционная картина наблюдается на экране Е, расположенном на некотором расстоянии l параллельно А 1 А 2 . Начало отсчета выбрано в точке 0, симметричной относительно щелей.


P

Плоская св. S O

A 2 S 2 l

Усиление и ослабление света в произвольной точке Р экрана зависит от оптической разности хода лучей D =nS 2 - n S 1 = L 2 – L 1 . Для получения различимой интерференционной картины расстояние между источниками А 1 А 2 = d должно быть значительно меньше расстояния l от источников до экрана. Расстояние х на экране, в пределах которого образуются интерференционные полосы, значительно меньше l . При этих условиях можно положить, что S 2 + S 1 » 2l . Из рис.3 по теореме Пифагора имеем

S 2 2 = l 2 + (x +d/2) 2 ; S 1 2 = l 2 + (x - d/2) 2 ,

откуда S 2 2 - S 1 2 = 2xd, а

S 2 – S 1 » xd/l .

Умножив это выражение справа и слева на показатель преломления среды n, получим

D = nxd/l . (6)

Подставив (6) в (4) получим, что максимумы интенсивности будут наблюдаться при значениях х, равных

х max = ± ml l/d, (m = 0, 1,2,.,.). (7)

Здесь l = l 0 /n - длина волны в среде, заполняющей пространство между источниками и экраном.

Координаты минимумов интенсивности будут:

х min = ±(m +1/2)l l/d, (m = 0,1,2,...). (8)

Расстояние между двумя соседними максимумами интенсивности называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами - шириной интерференционной полосы. Из (7) и (8) следует, что расстояние между полосами и ширина полосы не зависят от порядка интерференции (величины m), являются постоянными для данных условий эксперимента l ,l,d и имеют одинаковое значение, равное

Dх = l l/d. (9)

Измеряя параметры, входящие в (9), можно экспериментально определить длину волны оптического излучения l. Согласно (9) Dх пропорционально l /d, поэтому чтобы интерференционная картина была четко различима, необходимо соблюдение упоминавшегося выше условия: d<< l . Главный максимум, соответствующий m = 0, проходит через точку 0. Вверх и вниз от него на равных расстояниях друг от друга располагаются максимумы и минимумы интенсивности первого (m =1), второго (m = 2) порядков и т.д., которые представляют собой чередующиеся светлые и темные полосы, параллельные друг другу.

Такая картина справедлива при освещении экрана монохроматическим светом (l 0 = const). При освещении белым светом интерференционные максимумы и минимумы для каждой длины волны будут, согласно формуле (9), смещены друг относительно друга и иметь вид радужных полос. Только для главного максимума максимумы для всех длин волн совпадают, и в середине экрана будет наблюдаться светлая полоса, по обе стороны от которой симметрично расположатся спектрально окрашенные полосы максимумов первого, второго порядков и т д. Ближе к центральной светлой полосе будут находиться зоны фиолетового цвета, а дальше – зоны красного цвета.

Интенсивность интерференционных полос не остается постоянной, а изменяется вдоль экрана по закону квадрата косинуса.

Наблюдать интерференционную картину можно также с помощью зеркала Френеля, рис 4. (рис. 4.3 из Ландсберга, стр.71). Бизеркало Френеля состоит из двух плоских зеркал, расположенных под углом, близким 180 0 .

Свет от источника S падает расходящимся пучком на бизеркало, отражается зеркалами 1 и 2 и представляет собой две системы когерентных волн, как бы исходящих из источников S 1 и S 2 , являющихся мнимыми изображениями источника S в зеркалах 1 и 2. Мнимые источники S 1 и S 2 взаимно когерентны, и исходящие из них световые волны приходят в различные точки экрана Е с некоторой разностью фаз, определяемой различием в длине пути от источников S 1 и S 2 до соответствующей точки экрана, и интерферируют. Освещенность экрана в разных точках будет различной. Интерференционная картина будет тем шире, чем меньше угол между зеркалами, а экран должен быть расположен достаточно далеко от зеркала. Прямые лучи от источника света S не доходят до экрана, так как их задерживает заслонка Z.

Бипризма Френеля (рис.5 –рис.247 из Трофимовой, стр.323) состоит из двух одинаковых, сложенных основаниями призм с малыми преломляющими углами.

Свет от источника S преломляется в обеих призмах, в результате за призмой распространяются световые волны исходящие как бы из двух мнимых источников света S 1 и S 2 , являющихся когерентными. На достаточно удаленном от призмы экране Е происходит наложение и интерференция когерентных световых волн.

Наблюдать интерференционную картину можно также с помощью зеркала Лойда, билинзы Бийе и других оптических устройств, а также при отражении света от тонких прозрачных пленок.

В этой статье мы расскажем, что означает понятие когерентности, определим ее основные виды (временная и пространственная), а также решим несколько задач, связанных с оценкой когерентности. Начнем с базового определения.

Определение 1

При наблюдении интерференции волн одним из важнейших условий является их когерентность. О наличии когерентности говорят тогда, когда имеет место согласованность протекания волновых или колебательных процессов во времени и пространстве.

Когерентность характеризуется такой чертой, как степень (иначе ее можно назвать степенью согласованности вышеуказанных процессов). Различают два основных типа данного явления – временную и пространственную когерентность.

Что такое временная когерентность

Данный тип когерентности характеризуется длиной и продолжительностью. Она возникает тогда, когда мы имеем дело с немонохромным точечным источником света. Примером могут быть полосы, наблюдаемые при интерференции в специальном приборе – интерферометре Майкельсона: чем выше оптическая разность, тем менее четкими становятся полосы (вплоть до полного исчезновения). Основная причина временной когерентности света лежит в длине источника и конечном времени свечения.

Рассматривать когерентность можно с точки зрения двух подходов. Первый принято называть фазовым, а второй частотным. Фазовый подход заключается в том, что частоты формул, описывающих колебательные процессы в определенной точке пространства, возбуждаемые двумя накладывающимися волнами, будут постоянными и равными друг другу ω 1 = ω 2 .

Важно, что δ (t) = α 2 (t) - α 1 (t) . Здесь выражение 2 I 1 I 2 cos δ (t) – это так называемый интерференционный член.

Если мы измеряем процесс интерференции каким-либо прибором, необходимо учитывать, что он в любом случае будет иметь время инерции. Время срабатывания прибора можно обозначить как t i . Тогда если за время, равное t i , cos δ (t) будет принимать значения в интервале от минус единицы до плюс единицы, то 2 I 1 I 2 cos δ t = 0 .

В таком случае исследуемые волны когерентными не являются. Если же за указанное время величина cos δ (t) сохраняется практически неизменной, то интерференция становится очевидной, и у нас получаются когерентные волны.

Из всего этого можно сделать вывод об относительности понятия когерентности. При малой инерционности прибора интерференция, как правило, обнаруживается, а если прибор обладает большим временем инерции, то нужную картину мы можем просто не увидеть.

Определение 2

Время когерентности , обозначаемое как t k o g – это такое время, за которое происходит случайное изменение фазы волны a (t) , примерно равное π .

Если t i ≪ t k o g , то в приборе становится видно четную интерференционную картину.

Определение 3

Длина когерентности – это определенное расстояние, при перемещении по которому фаза претерпевает случайное изменение, примерно равное π .

Если мы делим естественную световую волну на две части, то для того, чтобы увидеть интерференцию, нужно сохранить оптическую разность хода меньше, чем l k o g .

Время когерентности имеет зависимость от интервала частот, а также от длины волн, представленных в общей световой волне.

Временная когерентность связана с разбросом величин модуля волнового числа k → .

Что такое пространственная когерентность

Если мы имеем дело с монохроматическим протяженным, а не точечным источником света, то здесь вводится понятие пространственной когерентности. Она имеет такие характеристики, как ширина, радиус и угол.

Пространственная когерентность зависит от вариативности направлений вектора k → . Направления данного вектора могут быть охарактеризованы с помощью единичного вектора e k → .

Длина пространственной когерентности, или радиус когерентности, – это расстояние ρ k o g .

Буквой φ обозначен угловой размер источника световой волны.

Замечание 1

Если волна света располагается вблизи нагретого тела, то ее пространственная когерентность составляет всего несколько длин волн. Чем больше расстояние от источника света, тем выше степень пространственной когерентности.

Пример 1

Условие: допустим, что угловой размер Солнца равен 0 , 01 р а д. Оно испускает волны света, равные 500 н м. Вычислите радиус когерентности данных волн.

Решение

Чтобы оценить радиус когерентности, воспользуемся формулой ρ k o g ~ λ φ . Вычисляем:

ρ k o g ~ 500 · 10 - 9 0 , 01 = 5 · 10 - 5 (м) .

Интерференция солнечных лучей не может быть видна невооруженным взглядом, поскольку радиус ее когерентности очень мал и находится вне разрешающей способности человеческого глаза.

Ответ: ρ k o g ~ 50 м к м.

Пример 2

Условие: если два не связанных между собой источника света испускают волны, почему данные волны не будут когерентными?

Решение

Чтобы дать объяснение этому явлению, обратимся к механизму возникновения излучения на атомном уровне. Если источники света независимы, то атомы в них испускают световые волны также независимо. Продолжительность излучения каждого атома равна примерно 10 - 8 c е к, после чего атом возвращается в обычное состояние, и излучение волны прекращается. Возбужденный атом будет испускать свет с изначально другой фазой, значит, разности фаз излучений двух подобных атомов будут переменными. Следовательно, волны, спонтанно испускающие свет, не являются когерентными. Данная модель будет справедливой для любых источников света с конечными размерами.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Рассмотрим волну, распространяющуюся в пространстве. Когерентность - это мера корреляции между ее фазами, измеренными в различных точках. Когерентность волны зависит от характеристик ее источника.

Два типа когерентности

Когда описывают когерентность световых волн, различают два ее типа - временную и пространственную.

Когерентность относится к способности света производить Если две световые волны сведены вместе, и они не создают областей повышенной и уменьшенной яркости, они называются некогерентными. Если они производят «идеальную» интерференционную картину (в смысле существования областей полной деструктивной интерференции), то они являются полностью когерентными. Если две волны создают «менее совершенную» картину, то считается, что они частично когерентны.

Интерферометр Майкельсона

Когерентность - это явление, которое лучше всего объяснить с помощью эксперимента.

В интерферометре Майкельсона свет от источника S (который может быть любым: солнцем, лазером или звездами) направлен на полупрозрачное зеркало M 0 , которое отражает 50 % света в направлении зеркала M 1 и пропускает 50 % в направлении зеркала M 2 . Луч отражается от каждого из зеркал, возвращается к M 0 , и равные части света, отраженные от М 1 и М 2, объединяются и проецируются на экран B. Прибор можно настроить путем изменения расстояния от зеркала M 1 до светоделителя.

Интерферометр Майкельсона, по существу, смешивает луч с задержанной во времени его собственной версией. Свет, который проходит по пути к зеркалу M 1 должен пройти расстояние на 2d больше, чем луч, который движется к зеркалу M 2 .

Длина и время когерентности

Что наблюдается на экране? При d = 0 видно множество очень четких интерференционных полос. Когда d увеличивается, полосы становится менее выраженными: темные участки становятся ярче, а светлые - тусклее. Наконец, при очень больших d, превышающих некоторое критическое значение D, светлые и темные кольца исчезают полностью, оставляя лишь размытое пятно.

Очевидно, что световое поле не может интерферировать с задержанной во времени версией самого себя, если временная задержка достаточно велика. Расстояние 2D - это длина когерентности: интерференционные эффекты заметны, только когда разница в пути меньше этого расстояния. Данную величину можно преобразовать во время t c делением ее на с: t c = 2D / с.

Измеряет временную когерентность световой волны: ее способность интерферировать с задержанной версией самой себя. У хорошо стабилизированного лазера t c =10 -4 с, l c = 30 км; у фильтрованного теплового света t c =10 -8 с, l c = 3 м.

Когерентность и время

Временная когерентность - это мера корреляции между фазами световой волны в различных точках вдоль направления распространения.

Предположим, источник излучает волны длиной λ и λ ± Δλ, которые в какой-то момент в пространстве будут интерферировать на расстоянии l c = λ 2 / (2πΔλ). Здесь l c - длина когерентности.

Фаза волны, распространяющейся в направлении х, задается как ф = kx - ωt. Если рассмотреть рисунок волн в пространстве в момент времени t на расстоянии l c , разность фаз между двумя волнами с векторами k 1 и k 2 , которые находятся в фазе при х = 0, равна Δφ = l c (k 1 - k 2). Когда Δφ = 1, или Δφ ~ 60°, свет больше не является когерентным. Интерференция и дифракция оказывают значительное влияние на контраст.

Таким образом:

  • 1 = l c (k 1 - k 2) = l c (2π / λ - 2π / (λ + Δλ));
  • l c (λ + Δλ - λ) / (λ (λ + Δλ)) ~ l c Δλ / λ 2 = 1/2π;
  • l c = λ 2 / (2πΔλ).

Волна проходит через пространство со скоростью с.

Время когерентности t c = l c / с. Так как λf = с, то Δf / f = Δω / ω = Δλ / λ. Мы можем написать

  • l c = λ 2 / (2πΔλ) = λf / (2πΔf) = с / Δω;
  • t c = 1 / Δω.

Если известна или частота распространения источника света, можно вычислить l c и t c . Невозможно наблюдать интерференционную картину, полученную путем деления амплитуды, такую как тонкопленочная интерференция, если оптическая разность хода значительно превышает l c .

Временная когерентность говорит о монохромности источника.

Когерентность и пространство

Пространственная когерентность - это мера корреляции между фазами световой волны в различных точках поперечно по отношению к направлению распространения.

При расстоянии L от теплового монохроматического (линейного) источника, линейные размеры которого порядка δ, две щели, расположенные на расстоянии, превышающем d c = 0,16λL / δ, больше не производят узнаваемую интерференционную картину. πd c 2 / 4 является площадью когерентности источника.

Если в момент времени t посмотреть на источник шириной δ, расположенный перпендикулярно расстоянию L от экрана, то на экране можно увидеть две точки (P1 и P2), разделенные расстоянием d. Электрическое поле в P1 и P2 представляет собой суперпозицию электрических полей волн, испускаемых всеми точками источника, излучение которых не связано между собой. Для того чтобы покидающие P1 и P2, создавали узнаваемую интерференционную картину, суперпозиции в P1 и P2 должны находиться в фазе.

Условие когерентности

Световые волны, излучаемые двумя краями источника, в некоторый момент времени t обладают определенной разностью фаз прямо в центре между двумя точками. Луч, идущий от левого края δ до точки P2 должен пройти на d(sinθ)/2 дальше, чем луч, направляющийся к центру. Траектория луча, идущего от правого края δ до точки P2, проходит путь на d(sinθ)/2 меньше. Разность пройденного пути для двух лучей равна d·sinθ и представляет разность фаз Δф" = 2πd·sinθ / λ. Для расстояния от P1 до P2 вдоль фронта волны мы получаем Δφ = 2Δφ"= 4πd·sinθ / λ. Волны, испускаемые двумя краями источника, находятся в фазе с P1 в момент времени t и не совпадают по фазе на расстоянии 4πdsinθ/λ в Р2. Так как sinθ ~ δ / (2L), то Δφ = 2πdδ / (Lλ). Когда Δφ = 1 или Δφ ~ 60°, свет больше не считается когерентным.

Δφ = 1 -> d = Lλ / (2πδ) = 0,16 Lλ / δ.

Пространственная когерентность говорит об однородности фазы волнового фронта.

Лампа накаливания является примером некогерентного источника света.

Когерентный свет можно получить от источника некогерентного излучения, если отбросить большую часть излучения. В первую очередь производится пространственная фильтрация для повышения пространственной когерентности, а затем спектральная фильтрация для увеличения временной когерентности.

Ряды Фурье

Синусоидальная плоская волна абсолютно когерентна в пространстве и времени, а ее длина, время и площадь когерентности бесконечны. Все реальные волны являются волновыми импульсами, длящимися в течение конечного интервала времени и имеющими конечный перпендикуляр к их направлению распространения. Математически они описываются непериодическими функциями. Для нахождения частот, присутствующих в волновых импульсах для определения Δω и длины когерентности необходимо провести анализ непериодических функций.

Согласно анализу Фурье, произвольную периодическую волну можно рассматривать как суперпозицию синусоидальных волн. Синтез Фурье означает, что наложение множества синусоидальных волн позволяет получить произвольную периодическую форму волны.

Связь со статистикой

Теорию когерентности можно рассматривать как связь физики с другими науками, так как она является результатом слияния электромагнитной теории и статистики, так же как статистическая механика является объединением механики со статистикой. Теория используется для количественного определения и характеристики влияний случайных флуктуаций на поведение световых полей.

Обычно невозможно измерить флуктуации волнового поля непосредственно. Индивидуальные «подъемы и падения» видимого света нельзя обнаружить непосредственно или даже имея сложные приборы: его частота составляет порядка 10 15 колебаний в секунду. Можно измерить только усредненные показатели.

Применение когерентности

Связь физики с другими науками на примере когерентности можно проследить в ряде приложений. Частично когерентные поля менее подвержены воздействию атмосферной турбулентности, что делает их полезными для лазерной связи. Также они применяются при исследовании лазерно-индуцированных реакций термоядерного синтеза: уменьшение эффекта интерференции приводит к «плавному» действию луча на термоядерную мишень. Когерентность используется, в частности, для определения размера звезд и выделения двойных звездных систем.

Когерентность световых волн играет важную роль в изучении квантовых, а также классических полей. В 2005 году Рой Глаубер стал одним из лауреатов Нобелевской премии по физике за вклад в развитие квантовой теории оптической когерентности.