Фронтальная плоскость уровня

Для получения представления о предмете используют его изображение на бумаге или экране. Обычно изображение предмета с какой-то одной из сторон не дает полноценного представления о его форме, требуется получить его проекции на две или три плоскости. Чтобы упорядочить процесс проецирования, плоскости, на которые происходит проецирование, располагают перпендикулярно друг другу. Рассмотрим, какие же существуют виды плоскостей. Всего их три, и они образуют в пространстве трехгранный прямой угол.

Каждая из плоскостей проекций имеет свое собственное название и буквенное обозначение. Фронтальная плоскость - это вертикально расположенная перед нашим взором плоскость проекций. Для наглядности - это плоскость, к которой мы обращены лицом, т. е. плоскость рассматриваемой нами картины. Обозначается фронтальная плоскость латинской буквой V.

Плоскость горизонтальная располагается перпендикулярно к фронтальной. Образно говоря, горизонтальная плоскость - это та плоскость, что лежит у нас «под ногами». Ее принято обозначать буквой H.

Третья из основных плоскостей проекций носит название профильной. Как и фронтальная плоскость, она расположена вертикально и образует прямой угол с двумя предыдущими. Обозначают профильную плоскость W.

При попарном пересечении трех данных плоскостей образуются оси проекций x, y, z. перпендикулярные лучи с общей вершиной в точке пересечения всех трех плоскостей проекций, обозначаемой буквой О.

Чтобы получить развернутое изображение предмета, требуется совместить его изображения, полученные на трех взаимно перпендикулярных гранях. Для этого две грани угла разворачивают и совмещают с третьей. Фронтальная плоскость остается на месте, горизонтальная поворачивается вниз на 90° вдоль оси x, профильная плоскость поворачивается вправо на 90° вдоль оси z. Таким образом две последние плоскости совмещаются с фронтальной (горизонтальная располагается под ней, профильная - справа).

В начертательной геометрии любая произвольно расположенная плоскость на чертеже может быть задана разными способами: проекциями трех не лежащих на одной прямой точек, проекцией прямой и точки, расположенной вне ее, а также проекциями параллельных либо пересекающихся прямых или плоской фигуры.

Относительно основных плоскостей проекций рассматриваемая плоскость может занимать следующие положения:

1. Она может быть неперпендикулярной ни одной из них. Тогда это - т. н. плоскость общего положения.

2. Может быть перпендикулярной одной из трех плоскостей проекций. В таком случае ее называют горизонтально-проецирующей, профильно-проецирующей или фронтально-проецирующей соответственно той плоскости, которой она перпендикулярна.

3. Плоскость может оказаться перпендикулярной двум из них и параллельной третьей. Тогда она носит название фронтальной, горизонтальной либо профильной соответственно.

Прямая может занимать следующие положения по отношению к плоскости:

1. Принадлежать ей.

2. Быть ей параллельной.

3. Пересекать плоскость (частный случай - в виде перпендикуляра)

У плоскости имеются главные линии, которые называются горизонталями и фронталями. Это прямые, лежащие в плоскости и параллельные соответствующим плоскостям проекций.

Любую плоскость можно изобразить в виде т. н. следов плоскости, то есть линий, по которым она пересекается с плоскостями проекций. Следы плоскости также называются горизонтальным, фронтальным и профильным. В местах пересечения с плоскостью осей проекций на осях возникают точки взаимного пересечения следов данной плоскости, которые принято именовать точками схода следов плоскости.

Горизонтальный и фронтальный следы плоскости на плоскостях проекций совпадают со своими одноименными проекциями. Также следует упомянуть, что любые горизонтали одной и той же плоскости взаимно параллельны и параллельны ее горизонтальному следу, а любые ее фронтали также взаимно параллельны и параллельны ее фронтальному следу.

По изображению предмета на одной плоскости проекций во многих случаях нельзя судить о его форме и размерах. Предметы, показанные на рис. 4.3, – прямоугольная пластинка, треугольная призма, прямоугольный параллелепипед и параллелепипед с частью цилиндра, – дают в этом случае одинаковые проекции в виде прямоугольника.

По одной проекции можно судить лишь о двух измерениях предмета.

Но и две проекции предмета часто недостаточно полно отображают его форму. Так, например, две проекции прямоугольного параллелепипеда (рис. 4.3, а, б ) неоднозначно отображают его форму. Такие две проекции могут иметь и треугольная призма (рис. 4.3, в ), и призма с закруглением (рис. 4.3, г ), и т.д.

Рис. 4.3.

Чтобы получить полное представление о форме и размерах предмета, его нужно спроецировать на две, три или более плоскостей. Для простоты проецирования эти плоскости располагают взаимно перпендикулярно. Таким образом, три плоскости образуют прямой трехгранный угол (рис. 4.4, а ). Каждой плоскости даны название и обозначение (рис. 4.4б а , б ).

Рис. 4.4.

Вертикальная плоскость, расположенная прямо перед нами, называется фронтальной плоскостью проекций. Она обозначается латинской буквой π 2. Под прямым углом к ней горизонтально располагается плоскость проекций, называемая горизонтальной плоскостью. Она обозначается латинской буквой π1. Перпендикулярно этим плоскостям располагается еще одна вертикальная плоскость, обозначенная буквой π3, называемая профильной плоскостью проекций. Попарное пересечение плоскостей трехгранного угла образует прямые линии – оси проекций, исходящие из точки О. Пересечение фронтальной и горизонтальной плоскостей проекций образует ось х, фронтальной и профильной – ось z1, профильной и горизонтальной – ось у (рис. 4.4, б ).

На рис. 4.4, а изображен трехгранный угол. Его грани взаимно перпендикулярны и не лежат в одной плоскости. Однако чертеж выполняется на плоскости. Для того чтобы изображения, полученные на сторонах трехгранного угла, оказались в одной плоскости, две грани этого угла развертывают до совмещения с третьей гранью, т.е. до такого положения, когда все три плоскости трехгранного угла окажутся в одной плоскости. Для этого горизонтальную плоскость поворачивают вокруг оси х вниз на 90°, профильную плоскость – вокруг оси z на 90° вправо, как показано стрелками. Тогда обе эти плоскости совмещаются с неподвижной фронтальной. При этом горизонтальная плоскость располагается под фронтальной, а профильная – справа от нее (рис. 4.4, б ).

Ось у как бы распадается на две: у и у 1.

Линии, ограничивающие плоскости проекций квадратами, взяты условно и значения не имеют, поэтому их обычно не проводят. Тогда плоскости проекций изобразятся, как показано на рис. 4.4, в.

Комплексный чертеж предмета

Изучив, как строят проекции точек, отрезков прямых и плоских фигур, т.е. элементов, которые ограничивают различные предметы (изделия или их составные части), можно перейти к рассмотрению способов получения прямоугольных изображений самих предметов.

На рис. 4.5, а представлен прямой трехгранный угол. Перед его плоскостями помещен изображаемый предмет – упор. Он расположен так, чтобы возможно большее число его граней было параллельно или перпендикулярно плоскостям проекций. Это значительно облегчает процесс проецирования.

Рис. 4.5.

Чтобы получить прямоугольные проекции изображаемого предмета, необходимо провести проецирующие лучи перпендикулярно плоскостям проекций.

Спроецируем упор на фронтальную плоскость проекций π2. Точки пересечения проецирующих лучей с этой плоскостью дадут проекции вершин упора. Соединив соответствующим образом эти точки, получим фронтальную проекцию, или вид спереди. Вид спереди называют также главным видом.

Построим проекцию упора на горизонтальной плоскости проекции π1 – вид сверху. Для этого опустим на горизонтальную плоскость перпендикуляры, проходящие через вершины упора, и полученные точки их пересечения с плоскостью соединим отрезками прямых.

Проведя проецирующие лучи на профильную плоскость проекций π3 и выполнив построения, аналогичные предыдущим, получим профильную проекцию изображаемого предмета – вид слева.

Сравнивая наглядное изображение упора с его проекциями (рис. 4.5, а ) и вспоминая изученное, можно установить следующее.

Во-первых, проекции упора на каждой из плоскостей проекций π2, π1, π3 представляют собой изображения не только одной стороны детали, но и всего предмета, всех его вершин, ребер и граней, если на горизонтальной и профильной проекциях штриховыми линиями показать невидимый сверху и слева контур детали. На фронтальной плоскости проекций видна лишь передняя грань упора. Это происходит потому, что боковые грани, перпендикулярные плоскости проекций, изобразились на ней в виде отрезков прямых. Грани, параллельные соответствующим плоскостям проекций, изображаются без искажения размеров.

Во-вторых, ребра, перпендикулярные плоскости проекций, изобразились на ней в виде точек (например, ребро АВ на горизонтальной плоскости проекций), а ребра, параллельные плоскости проекций, изобразились на ней в натуральную величину (например, ребро АВ на фронтальной и профильной плоскостях проекций).

В-третьих, наклонная грань упора ни на одной плоскости проекций не изобразилась в натуральную величину, хотя размер одной стороны этой грани можно измерить по проекции ее ребра, параллельного фронтальной плоскости проекций, а размер другой – по проекции ребра, параллельного горизонтальной и профильной плоскостям проекций, на одной из них.

Развернем плоскости проекций так, как это было показано на рис. 4.4, чтобы совместить их в плоскости чертежа (рис. 4.5, б ). Фронтальная плоскость π2 при этом остается неподвижной, горизонтальная π1 поворачивается вокруг оси х вниз на 90°, профильная π3 поворачивается вокруг оси z на 90° вправо. Тогда виды расположатся так: вид сверху – под главным видом, а вид слева – справа от главного вида и на уровне его.

Фронтальные и горизонтальные проекции одноименных точек находятся при этом на одних перпендикулярах к оси х (например, фронтальная а" и горизонтальная а проекции точки А , а их фронтальные и профильные проекции располагаются на одних перпендикулярах к оси z (например, фронтальная а" и профильная а" проекции точки А ). Эти перпендикуляры называют линиями связи. Таким образом, все три проекции упора оказываются связанными между собой. Положение любых двух проекций определяет положение третьей.

На чертежах не проводят рамки, ограничивающие плоскости проекций, и линии связи (см. рис. 4.4, в). Удалив их, мы получим чертеж, представленный на рис. 4.5, в.

Иногда изображения предмета на совмещенных плоскостях проекций называют комплексным чертежом.

Так строят чертежи в системе прямоугольных проекций. Однако нас интересует не только построение чертежей, но и чтение их, т.е. процесс представления пространственной формы предмета по его плоским изображениям.

Для того чтобы прочитать чертеж, нужно представить себе, в результате чего получилось на нем то или иное изображение, подумать, какое тело могло дать рассматриваемые проекции. При этом нельзя рассматривать проекции изолированно одну от другой. Необходимо мысленно объединить в единое целое представления о всех проекциях, данных на чертеже. 1

  • Горизонтальные проекции точек будем обозначать без штриха (а ), фронтальные – с одним штрихом (а" ) и профильные – с двумя штрихами (в"). Читается: "а малое штрих", "а малое два штриха".

Плоскость

Элементы, определяющие плоскость

Плоскость в пространстве определяют:

1) тремя точками (на эпюре каждая точка определяется минимально двумя своими проекциями (рис. 48));

2) прямой и точкой вне ее (рис. 49). В свою очередь прямая в пространстве определяется двумя точками. Отсюда возможность перехода от задания 2) к заданию 1);

Рис. 48 Рис. 49

3) двумя пересекающимися прямыми (рис. 50). Сравните с заданиями 1) и 2);

Рис. 50 Рис. 51

4) двумя параллельными прямыми (рис. 51). Сравните с 1), 2), 3);

5) любой плоской фигурой (рис.52).

Рис. 52

Различные положения плоскости в пространстве

Плоскости уровня

1. Горизонтальная плоскость или плоскость горизонтального уровня – это плоскость w, параллельная горизонтальной плоскости проекций П 1 (рис. 53). На плоскость П 1 любые фигуры плоскости w проецируются в натуральную величину, а на П 2 и П 3 плоскость проецируется в прямые w 2 и w 3 , которые называются вырожденными проекциями плоскости. Для задания плоскости w на эпюре достаточно одной ее вырожденной проекции, например w 2 .

Рис. 53

2. Фронтальная плоскость или плоскость фронтального уровня , это плоскость υ параллельная фронтальной плоскости проекций (рис. 54). На плоскость П 2 она проецируется в натуральную величину, а на П 1 и П 3 вырождается в прямые υ 1 и υ 3 .

Рис. 54

3. Профильная плоскость или плоскость профильного уровня – это плоскость γ, параллельная профильной плоскости проекций П 3 (рис. 55). На плоскость П 3 она проецируется в натуральную величину, а на П 1 и П 2 вырождается в прямые γ 1 , γ 2 .

Характеристика Наглядное изображение Эпюр
Фронтальнаяплоскость – это плоскость, параллельная плоскости p 2 . Эта плоскость пересекает плоскость p 1 параллельно оси ОХ, а плоскость p 3 – по линии, параллельной оси OZ
Горизонтальная плоскость – это плоскость, параллельная плоскости проекции p 1 . Эта плоскость пересекает плоскость p 2 параллельно оси ОХ, а плоскость p 3 – параллельно оси ОУ
Профильная плоскость – это плоскость, параллельная плоскости p 3 . Эта плоскость пересекает плоскости проекций p 1 и p 2 по линиям, параллельным оси Z

11. Назовите главные линии плоскости Изобразите их

12. поясните, какое взаимное положение могут занимать плоскость и пряма, две плоскости. Назовите признаки взаимного положения. Рассмотрите пример построения на комплексном чертеже.

Прямая параллельна плоскости , если она параллельна какой-нибудь прямой, лежащей в этой плоскости. Чтобы построить такую прямую, необходимо в плоскости задать любую прямую и параллельно ей провести требуемую.

Рис. 1.53 Рис. 1.54 Рис.1.55

Пусть через точку А (рис. 1.53) необходимо провести прямую АВ , параллельную плоскости Q , заданную треугольником CDF. Для этого через фронтальную проекцию точки а / точки А проведем фронтальную проекцию а / в / искомой прямой параллельно фронтальной проекции любой прямой, лежащей в плоскости Р, например, прямой CD (а / в / !! с / д / ). Через горизонтальную проекцию а точки А параллельно сд проводим горизонтальную проекцию ав искомой прямой АВ (ав11 сд). Прямая АВ параллельна плоскости Р, заданной треугольником CDF.


Из всех возможных положений прямой, пересекающей плоскость, отметим случай, когда прямая перпендикулярна плоскости. Рассмотрим свойства проекций такой прямой.

Рис. 1.56 Рис. 1.57

Прямая перпендикулярна плоскости (частный случай пересечения прямой с плоскостью) если она перпендикулярна какой-либо прямой, лежащей в плоскости. Для построения проекций перпендикуляра к плоскости, находящейся в общем положении, этого недостаточно без преобразования проекций. Поэтому вводят дополнительное условие: прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся главным линиям (для построения проекций используется условие проецирования прямого угла). В этом случае: горизонтальная и фронтальная проекции перпендикуляра перпендикулярны соответственно горизонтальной проекции горизонтали и фронтальной проекции фронтали данной плоскости общего положения (рис. 1.54). При задании плоскости следами проекции перпендикуляра перпендикулярны соответственно фронтальная – фронтальному следу, горизонтальная – горизонтальному следу плоскости (рис. 1.55).


Пересечение прямой с проецирующей плоскостью.Рассмотрим прямую, пересекающую плоскость , когда плоскость находится в частном положении.

Плоскость, перпендикулярная плоскости проекций (проецирующая плоскость), проецируется на нее в виде прямой линии. На этой прямой (проекции плоскости) должна находиться соответствующая проекция точки, в которой некоторая прямая пересекает эту плоскость (рис.1.56).

На рисунке 1.56 фронтальная проекция точки К пересечения прямой АВ с треугольником СDE определяется в пересечении их фронтальных проекций, т.к. треугольник СDE проецируется на фронтальную плоскость в виде прямой линии. Находим горизонтальную проекцию точки пересечения прямой с плоскостью (она лежит на горизонтальной проекции прямой). Способом конкурирующих точек, определяем видимость прямой АВ относительно плоскости треугольника СDE на горизонтальной плоскости проекций.

На рисунке 1.59 изображена горизонтально-проецирующая плоскость P и прямая общего положения АВ . Т.к. плоскость Р перпендикулярна горизонтальной плоскости проекций, то все, что в ней находится, на горизонтальную плоскость проекций проецируется на ее след, в том числе и точка ее пересечения с прямой АВ . Следовательно, на комплексном чертеже имеем горизонтальную проекцию точки пересечения прямой с плоскостью Р . По принадлежности точки прямой, находим фронтальную проекцию точки пересечения прямой АВ с плоскость Р . Определяем видимость прямой на фронтальной плоскости проекций.

Рис. 1.58 Рис. 1.59


На рисунке 1.58 дан комплексный чертеж построения проекций точки пересечения прямой АВ с плоскостью горизонтального уровня G .Фронтальный след плоскости G является ее фронтальной проекцией. Фронтальная проекция точки пересечения плоскости G с прямой АВ определятся в пересечении фронтальной проекции прямой и фронтального следа плоскости. Имея фронтальную проекцию точки пересечения, находим горизонтальную проекцию точки пересечения прямой АВ с плоскостью G .

На рисунке 1.57 изображена плоскость общего положения, заданная треугольником CDE и фронтально-проецирующая прямая АВ ? пересекающая плоскость в точке K. Фронтальная проекция точки – k / совпадает с точками a / и b / . Для построения горизонтальной проекции точки пересечения проведем через точку K в плоскости CDE прямую (например, 1-2 ). Построим ее фронтальную проекцию, а затем горизонтальную. Точка K является точкой пересечения прямых AB и 1-2. То есть точка K одновременно принадлежит прямой AB и плоскости треугольника и, следовательно, является точкой их пересечения.

Пересечение двух плоскостей.Прямая линия пересечения двух плоскостей определяется двумя точками, каждая из которых принадлежит обеим плоскостям, или одной точкой, принадлежащей двум плоскостям, и известным направлением линии. В обоих случаях задача заключается в нахождении точки, общей для двух плоскостей.

Пересечение проецирующих плоскостей. Две плоскости могут быть параллельны между собой или пересекаться. Рассмотрим случаи взаимного пересечения плоскостей.

Прямая линия, получаемая при взаимном пересечении двух плоскостей, вполне определяется двумя точками, из которых каждая принадлежит обеим плоскостям, следовательно, необходимо и достаточно найти эти две точки, принадлежащей линии пересечения двух заданных плоскостей.


Следовательно, в общем случае для построения линии пересечения двух плоскостей необходимо найти какие-либо две точки, каждая из которых принадлежит обеим плоскостям. Эти точки и определяют линию пересечения плоскостей. Для нахождения каждой из этих двух точек обычно приходится выполнять специальные построения. Но если хотя бы одна из пересекающихся плоскостей перпендикулярна (или параллельна) к какой-либо плоскости проекций, то построение проекции линии их пересечения упрощается.

Рис. 1.60 Рис. 1.61

Если плоскости, заданны следами, то естественно искать точки, определяющие прямую пересечения плоскостей, в точках пересечения одноименных следов плоскостей попарно: прямая, проходящая через эти точки, является общей для обеих плоскостей, т.е. их линией пересечения.

Рассмотрим частные случаи расположения одной (или обеих) из пересекающихся плоскостей.

На комплексном чертеже (рис.1.60) изображены горизонтально-проецирующие плоскости P и Q. Тогда горизонтальная проекция их линии пересечения вырождается в точку, а фронтальная проекция – в прямую, перпендикулярную оси оx.

На комплексном чертеже (рис. 1.61) изображены плоскости частного положения: плоскость Р перпендикулярна горизонтальной плоскости проекций (горизонтально-проецирующая плоскость) и плоскость Q - плоскость горизонтального уровня. В этом случая, горизонтальная проекция их линии пересечения совпадет с горизонтальным следом плоскости Р , а фронтальная – с фронтальным следом плоскости Q .

В случае задания плоскостей следами легко установить, что эти плоскости пересекаются: если хотя бы одна пара одноименных следов пересекается, то плоскости пересекаются между собой.


Изложенное относится к плоскостям, заданных пересекающимися следами. Если же обе плоскости имеют на горизонтальной и фронтальной плоскостях следы, параллельные друг другу, то эти плоскости могут быть параллельны либо пересекаться. О взаимном положении таких плоскостей можно судить, построив третью проекцию (третий след). Если следы обеих плоскостей на третьей проекции так же параллельны, то плоскости параллельны между собой. Если следы на третьей плоскости пересекаются, то заданные в пространстве плоскости пересекаются.

На комплексном чертеже (рис.1.62) изображены фронтально-проецирующие плоскости, заданные треугольником АВС и DEF . Проекция линии пересечения на фронтальной плоскости проекций – точка, т.е. так как треугольники перпендикулярны фронтальной плоскости проекций, то и их линия пересечения так же перпендикулярна фронтальной плоскости проекций. Следовательно горизонтальная проекции линии пересечения треугольников (12 ) перпендикулярна оси оx. Видимость элементов треугольников на горизонтальной плоскости проекции определяется с помощью конкурирующих точек (3,4).

На комплексном чертеже (рис. 1.63) заданы две плоскости: одна из которых треугольником АВС общего положения, другая – треугольником DEF перпендикулярна фронтальной плоскости проекций, т.е. находящийся в частном положении (фронтально-проецирующий). Фронтальная проекция линии пересечения треугольников (1 / 2 / ) находится исходя из общих точек, одновременно принадлежащих обоим треугольникам (все, что находится во фронтально- проецирующем треугольнике DEF на фронтальной проекции выльется в линию – проекцию его на фронтальную плоскость, в том числе и линия его пересечения с треугольником АВС. По принадлежности точек пересечения сторонам треугольника АВС , находим горизонтальную проекцию линии пересечения треугольников. Способом конкурирующих точек определяем видимость элементов треугольников на горизонтальной плоскости проекций.

Рис. 1.63 Рис. 1.64

На рисунке 1.64 дан комплексный чертеж двух плоскостей, заданных треугольником общего положения АВС и горизонтально-проецирующая плоскость Р , заданная следами. Так как плоскость Р – горизонтально- проецирующая, то все, что в ней находится, в том числе и линия ее пересечения с плоскостью треугольника АВС , на горизонтальной проекции совпадет с ее

горизонтальным следом. Фронтальную проекцию линии пересечения данных плоскостей находим из условия принадлежности точек элемента (сторонам) плоскости общего положения.

В случае задания плоскостей общего положения не следами, то для получения линии пересечения плоскостей последовательно находится точка встречи стороны одного треугольника с плоскостью другого треугольника. Если плоскости общего положения заданы не треугольниками, то линию ппересечения таких плоскостей можно найти путем введения поочередно двух вспомогательных секущих плоскостей – проецирующих (для задания плоскостей треугольниками) или уровня для всех других случаев.

Пересечение прямой общего положения с плоскость общего положения.Ранее были рассмотрены случаи пересечения плоскостей, когда одна из них являлась проецирующей. На основе этого мы можем найти точку пересечения прямой общего положения с плоскостью общего положения, путем введения дополнительной проецирующей плоскости-посредника.

Прежде чем рассматривать пересечение плоскостей общего положения, рассмотрим пересечение прямой общего положения с плоскостью общего положения.

Для нахождения точки встречи прямой общего положения с плоскостью общего положения необходимо:

1) прямую заключить во вспомогательную проецирующую плоскость,

2) найти линию пересечения заданной и вспомогательных плоскостей,


Определить общую точку, принадлежащую одновременно двум плоскостям (это их линия пересечения) и прямой.

Рис. 1.65 Рис. 1.66


Рис. 1.67 Рис. 1.68

На комплексном чертеже (рис. 1.65) изображен треугольник СDE общего положения и прямая АВ общего положения. Для нахождения точки пересечения прямой с плоскостью, заключим прямую АВ Q . Найдем линию пересечения (12 ) плоскости- посредника Q и заданной плоскости СDE . При построении горизонтально проекции линии пересечения найдется общая точка К , одновременно принадлежащая двум плоскостям и заданной прямой АВ . Из принадлежности точки прямой находим фронтальную проекцию точки пересечения прямой с заданной плоскостью. Видимость элементов прямой на плоскостях проекций, определяем с помощью конкурирующих точек.

На рисунке 1.66 показан пример нахождения точки встречи прямой АВ , являющейся горизонталью (прямая параллельна горизонтальной плоскости проекций) и плоскости Р , общего положения, заданной следами. Для нахождения точки их пересечения, прямая АВ заключается в горизонтально- проецирующую плоскость Q. Далее поступают, как и в выше изложенном примере.


Для нахождения точки встречи горизонтально-проецирующей прямой АВ с плоскостью общего положения (рис. 1.67), через точку встречи прямой с плоскостью (ее горизонтальная проекция совпадает с горизонтальной проекцией самой прямой) проводим горизонталь (т.е. привязываем точку пересечения прямой с плоскостью в плоскость Р ). Найдя фронтальную проекцию проведенной горизонтали в плоскости Р , отмечаем фронтальную проекцию точки встречи прямой АВ с плоскостью Р.

Для нахождения линии пересечения плоскостей общего положения, заданных следами достаточно отметить две общие точки, одновременно принадлежащие обеим плоскостям. Такими точками являются точки пересечения их следов (рис.1.68).

Для нахождения линии пересечения плоскостей общего положения, заданных двумя треугольниками (рис. 1.69), последовательно находим точку

встречи стороны одного треугольника с плоскостью другого треугольника. Взяв любые две стороны из любого треугольника, заключив их в проецирующие плоскости посредники, находятся две точки, одновременно принадлежащие обоим треугольникам – линия их пересечения.

На рисунке 1.69 дан комплексный чертеж треугольников ABC и DEF общего положения. Для нахождения линии пересечения данных плоскостей:

1. Заключаем сторону ВС треугольника АВС во фронтально- проецирующую плоскость S (выбор плоскостей совершенно произвольный).

2. Находим линию пересечения плоскости S и плоскости DEF – 12 .

3. Отмечаем горизонтальную проекцию точки встречи (общая точка двух треугольников) К из пересечения 12 и ВС и находим ее фронтальную проекцию на фронтальной проекции прямой ВС.

4. Проводим вторую вспомогательную проецирующую плоскость Q через сторону DF треугольника DEF .

5. Находим линию пересечения плоскости Q и треугольника АВС – 3 4.

6. Отмечаем горизонтальную проекцию точки L , являющейся точкой встречи стороны DF c плоскостью треугольника АВС и находим ее фронтальную проекцию.

7. Соединяем одноименные проекции точек К и L. К L – линя пересечения плоскостей общего положения, заданных треугольниками АВС и DEF .

8. Способом конкурирующих точек определяем видимость элементов треугольников на плоскостях проекций.

Так как выше изложенное действительно и для главных линий параллельных плоскостей, то можно сказать, что плоскости параллельны, если параллельны их одноименные следы (рис. 1.71).


На рисунке 1.72 показано построение плоскости параллельной заданной и проходящей через точку А. В первом случае через точку А проведена прямая (фронталь), параллельная заданной плоскости G . Тем самым проведена плоскость Р содержащая прямую параллельную заданной плоскости G и параллельная ей. Во втором случае через точку А проведена плоскость, заданная главными линиями из условия параллельности этих линий заданной плоскости G .

Взаимно-перпендикулярные плоскости.Если одна плоскость содержит

хотя бы одну прямую, перпендикулярную другой плоскости, то такие

плоскости перпендикулярны. На рисунке 1.73показаны взаимно перпендикулярные плоскости. На рисунке 1.74 показано построение плоскости, перпендикулярной заданной через точку А, используя условие перпендикулярности прямой (в данном случае главных линий) плоскости.


В первом случае через точку А проведена фронталь, перпендикулярная плоскости Р , построен ее горизонтальный след и через него проведен горизонтальный след плоскости Q , перпендикулярно горизонтальному следу плоскости Р . Через полученную точку схода следов Q X проведен фронтальный след плоскости Q перпендикулярно фронтальному следу плоскости Р .

Во втором случае в плоскости треугольника проведены горизонталь ВЕ и фронталь BF и через заданную точку А задаем плоскость пересекающимися прямыми (главными линиями), перпендикулярную плоскости треугольника. Для этого проводим через точку А горизонталь и фронталь. Горизонтальную проекцию горизонтали искомой плоскости (N ) проводим перпендикулярно горизонтальной проекции горизонтали треугольника, фронтальную проекцию фронтали новой плоскости (M ) – перпендикулярно фронтальной проекции фронтали треугольника.

План

1. Проекции плоскостей общего положения

2. Проекции плоскостей уровня

Горизонтальная плоскость

Фронтальная плоскость

Профильная плоскость

3. Проекции проецирующих плоскостей

Горизонтально-проецирующая плоскость

Фронтально-проецирующая плоскость

Профильно-проецирующая плоскость

4. Взаимное расположение двух плоскостей

Параллельные плоскости

Пересекающиеся плоскости

5. Пересечение плоскостей общего положения

6. Взаиморасположение прямой и плоскости

Прямая - в плоскости

Прямая, параллельная плоскости

Прямая пересекает плоскость

7. Пересечение прямой с плоскостью

8. Условие видимости на чертеже

1. Проекции плоскостей общего положения

На комплексном чертеже плоскость может быть задана изображениями тех геометрических элементов, которые вполне определяют положение плоскости в пространстве. Это:

1) три точки, не лежащие на одной прямой (рис. 30);

3) две параллельные прямые (рис. 27);

4) две пересекающиеся прямые (рис. 28).

При решении некоторых задач целесообразно задавать на комплексном чертеже плоскость ее следами (рис. 31).

Рис. 30 Рис. 31

СЛЕДОМ ПЛОСКОСТИ называется прямая, по которой данная плоскость пересекается с плоскостью проекций.

На рис. 31 изображена плоскость  и ее следы: с - горизонтальный; а - фронтальный; b - профильный. Следы плоскости сливаются с одноименными своими проекциями: след с = с"; след а = а""; след b = b""". Точки

называются точками схода следов.

2. Проекции плоскостей уровня

Плоскостями уровня называются плоскости, параллельные плоскостям проекций.

Характерная особенность этих плоскостей состоит в том, что элементы, расположенные в этих плоскостях, проецируются на соответствующую плоскость проекций в натуральную величину.

Горизонтальная плоскость

Горизонтальная плоскость (рис. 32) параллельна горизонтальной плоскости проекций.

На рис. 32 изображена горизонтальная плоскость  ( V).

Фронтальная плоскость

Фронтальная плоскость (рис. 33) параллельна фронтальной плоскости проекций.

На двухкартинном комплексном чертеже она изображается одним фронтальным следом, параллельным оси x.

Рис. 32 Рис. 33

На рис. 33 изображена фронтальная плоскость  ( ).

Профильная плоскость

Профильная плоскость (рис. 34) параллельна профильной плоскости проекций.

На двухкартинном комплексном чертеже она изображается двумя следами: горизонтальным и фронтальным, перпендикулярными оси x.

На рис. 34 изображена профильная плоскость  ( H,V).

Рис. 34

3. Проекции проецирующих плоскостей

ПРОЕЦИРУЮЩИМИ называются плоскости, перпендикулярные к плоскостям проекций.

Характерной особенностью таких плоскостей является их собирательное свойство. Оно заключается в следующем: соответствующий след - проекция плоскости - собирает одноименные проекции всех элементов, расположенных в данной плоскости.

Горизонтально-проецирующая плоскость

Горизонтально-проецирующая плоскость (рис. 33) перпендикулярна к горизонтальной плоскости проекций H.

Рис. 35 Рис. 36

Горизонтальные проекции всех точек, принадлежащих горизонтально-проецирующей плоскости , располагаются на горизонтальном следе - проекции  H этой плоскости (рис. 35).

Фронтально-проецирующая плоскость

Фронтально-проецирующая плоскость (рис. 36) перпендикулярна к фронтальной плоскости проекций V.

Фронтальные проекции всех точек, принадлежащих фронтально-проецирующей плоскости , располагаются на фронтальном следе - проекции   этой плоскости (рис. 36).

Профильно-проецирующая плоскость

Профильно-проецирующая плоскость (рис. 37) перпендикулярна к профильной плоскости проекций W.


Рис. 37

Профильные проекции всех точек, принадлежащих профильно-проецирующей плоскости , располагаются на профильном следе -проекции этой  W плоскости (рис. 37).