Формула пластической серы в химии. Физические свойства, характеризующие серу

Чистая желтая сера

Минерал из класса самородных элементов. Сера представляет собой пример хорошо выраженного энантиоморфного полиморфизма. В природе образует 2 полиморфные модификации: a-сера ромбическая и b-сера моноклинная. При атмосферном давлении и температуре 95,6°С a-сера переходит в b-серу. Сера жизненно необходима для роста растений и животных, она входит в состав живых организмов и продуктов их разложения, ее много, например, в яйцах, капусте, хрене, чесноке, горчице, луке, волосах, шерсти и т.д. Она присутствует также в углях и нефти.

Смотрите так же:

СТРУКТУРА

Самородная сера обычно представлена a-серой, которая кристаллизуется в ромбической сингонии, ромбо-дипирамидальный вид симметрии. Кристаллическая сера имеет две модификации; одну из них, ромбическую, получают из раствора серы в сероуглероде (CS 2) испарением растворителя при комнатной температуре. При этом образуются ромбовидные просвечивающие кристаллы светложелтого цвета, легко растворимые в CS 2 . Эта модификация устойчива до 96° С, при более высокой температуре стабильна моноклинная форма. При естественном охлаждении расплавленной серы в цилиндрических тиглях вырастают крупные кристаллы ромбической модификации с искаженной формой (октаэдры, у которых частично «срезаны» углы или грани). Такой материал в промышленности называется комовая сера. Моноклинная модификация серы представляет собой длинные прозрачные темножелтые игольчатые кристаллы, также растворимые в CS 2 . При охлаждении моноклинной серы ниже 96° С образуется более стабильная желтая ромбическая сера.

СВОЙСТВА

Самородная сера жёлтого цвета, при наличии примесей — жёлто-коричневая, оранжевая, бурая до чёрной; содержит включения битумов, карбонатов, сульфатов, глины. Кристаллы чистой серы прозрачны или полупрозрачны, сплошные массы просвечивают в краях. Блеск смолистый до жирного. Твердость 1-2, спайности нет, излом раковистый. Плотность 2,05 -2,08 г/см 3 , хрупкая. Легко растворима в канадском бальзаме, в скипидаре и керосине. В HCl и H 2 SO 4 нерастворима. HNO 3 и царская водка окисляют серу, превращая её в H 2 SO 4 . Сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов.
Наиболее стабильны циклические молекулы S 8 , имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера - хрупкое вещество жёлтого цвета. Кроме того, возможны молекулы с замкнутыми (S 4 , S 6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета, которая получается при резком охлаждении расплава серы (пластическая сера уже через несколько часов становится хрупкой, приобретает жёлтый цвет и постепенно превращается в ромбическую). Формулу серы чаще всего записывают просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами.
Плавление серы сопровождается заметным увеличением объёма (примерно 15 %). Расплавленная сера представляет собой жёлтую легкоподвижную жидкость, которая выше 160 °C превращается в очень вязкую тёмно-коричневую массу. Наибольшую вязкость расплав серы приобретает при температуре 190 °C; дальнейшее повышение температуры сопровождается уменьшением вязкости и выше 300 °C расплавленная сера снова становится подвижной. Это связано с тем, что при нагревании серы она постепенно полимеризуется, увеличивая длину цепочки с повышением температуры. При нагревании серы свыше 190 °C полимерные звенья начинают рушиться.
Сера может служить простейшим примером электрета. При трении сера приобретает сильный отрицательный заряд.

МОРФОЛОГИЯ

Образует усечённо-дипирамидальные, реже дипирамидальные, пинакоидальные или толстопризматические кристаллы, а также плотные скрытокристаллические, сливные, зернистые, реже тонковолокнистые агрегаты. Главные формы на кристаллах: дипирамиды (111) и (113), призмы (011) и (101), пинакоид (001). Также сростки и друзы кристаллов, скелетные кристаллы, псевдосталактиты, порошковатые и землистые массы, налёты и примазки. Для кристаллов характерны множественные параллельные срастания.

ПРОИСХОЖДЕНИЕ

Сера образуется при вулканических извержениях, при выветривании сульфидов, при разложении гипсоносных осадочных толщ, а также в связи с деятельностью бактерий. Главные типы месторождений самородной серы — вулканогенные и экзогенные (хемогенно-осадочные). Экзогенные месторождения преобладают; они связаны с гипсо-ангидритами, которые под воздействием выделений углеводородов и сероводорода восстанавливаются и замещаются серно-кальцитовыми рудами. Такой инфильтрационно-метасоматический генезис имеют все крупнейшие месторождения. Самородная сера часто образуется (кроме крупных cкоплений) в результате окисления H 2 S. Геохимические процессы её образования существенно активизируются микроорганизмами (сульфатредуцирующими и тионовыми бактериями). Сопутствующие минералы — кальцит, арагонит, гипс, ангидрит, целестин, иногда битумы. Среди вулканогенных месторождений самородной серы главное значение имеют гидротермально-метасоматические (например, в Японии), образованные сероносными кварцитами и опалитами, и вулканогенно-осадочные сероносные илы кратерных озёр. Образуется также при фумарольной деятельности. Образуясь в условиях земной поверхности, самородная сера является всё же не очень устойчивой и, постепенно окисляясь, даёт начало сульфатам, гл. образом гипсу.
Используется в производстве серной кислоты (около 50% добываемого количества). В 1890 г. Герман Фраш предложил плавить серу под землёй и извлекать на поверхность через скважины, и в настоящее время месторождения серы разрабатывают главным образом путём выплавки самородной серы из пластов под землёй непосредственно в местах её залегания. Сера также в больших количествах содержится в природном газе (в виде сероводорода и сернистого ангидрида), при добыче газа она откладывается на стенках труб, выводя их из строя, поэтому её улавливают из газа как можно быстрее после добычи.

ПРИМЕНЕНИЕ

Примерно половина производимой серы используется в производстве серной кислоты. Серу применяют для вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная - лекарственный препарат. Также сера в составе серобитумных композиций применяется для получения сероасфальта, а в качестве заместителя портландцемента - для получения серобетона. Сера находит применение для производства пиротехнических составов, ранее использовалась в производстве пороха, применяется для производства спичек.

Сера (англ. Sulphur) — S

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/B.03-10
Nickel-Strunz (10-ое издание) 1.CC.05
Dana (7-ое издание) 1.3.4.1
Dana (8-ое издание) 1.3.5.1
Hey’s CIM Ref. 1.51

Сера - довольно распространенный в природе химический элемент (шестнадцатый по содержанию в земной коре и шестой - в природных водах). Встречаются как самородная сера (свободное состояние элемента) так и ее соединения.

Сера в природе

В числе важнейших природных можно назвать железный колчедан, сфалерит, галенит, киноварь, антимонит. В Мировом океане содержится в основном в виде магния и натрия, обуславливающих жесткость природных вод.

Как получают серу?

Добыча серных руд производится разными методами. Основным способом получения серы является ее выплавка непосредственно в местах залегания.

Открытый способ добычи предусматривает использование экскаваторов, снимающих породные пласты, которые покрывают серную руду. После дробления пластов руды взрывами их направляют на сероплавильный завод.

В промышленности серу получают как побочный продукт процессов в печах для плавки, при нефтепереработке. В больших количествах она присутствует в природном газе (в виде сернистого ангидрида или сероводорода), при добыче которого откладывается на стенках применяемого оборудования. Уловленную из газа мелкодисперсную серу используют в химической промышленности в качестве сырья для производства различной продукции.

Данное вещество можно получать и из природного сернистого газа. Для этого используется метод Клауса. Он заключается в применении «серных ям», в которых происходит дегазация серы. Результатом является модифицированная сера, широко использующаяся в производстве асфальта.

Основные аллотропические модификации серы

Сере присуща аллотропия. Известно большое количество аллотропических модификаций. Наиболее известными являются ромбическая (кристаллическая), моноклинная (игольчатая) и пластическая сера. Первые две модификации являются устойчивыми, третья при затвердевании превращается в ромбическую.

Физические свойства, характеризующие серу

Молекулы ромбической (α-S) и моноклинной (β-S) модификаций содержат по 8 атомов серы, которые соединены в замкнутый цикл одинарными ковалентными связями.

В обычных условиях сера имеет ромбическую модификацию. Представляет собой желтое твердое кристаллическое вещество с плотностью 2,07 г/см 3 . Плавится при 113 °C. Плотность моноклинной серы составляет 1,96 г/см 3 , температура ее плавления равна 119,3 °C.

При плавлении сера увеличивается в объеме и становится желтой жидкостью, которая буреет при температуре 160 °C и превращается в вязкую темно-коричневую массу при достижении около 190 °C. При температурах, превышающих это значение, вязкость серы уменьшается. При около 300 °C она снова переходит в жидкое текучее состояние. Это объясняется тем, что в процессе нагревания сера полимеризуется, с повышением температуры увеличивая длину цепочки. А при достижении температурного значения свыше 190 °C наблюдается разрушение полимерных звеньев.

При охлаждении расплава серы естественным путем в цилиндрических тиглях образуется так называемая комовая сера - ромбические кристаллы крупных размеров, имеющие искаженную форму в виде октаэдров с частично «срезанными» гранями или углами.

Если расплавленное вещество подвергнуть резкому охлаждению (к примеру, при помощи холодной воды), то можно получить пластическую серу, представляющую собой упругую каучукоподобную массу коричневатого или темно-красного цвета с плотностью 2,046 г/см 3 . Данная модификация, в отличие от ромбической и моноклинной, является неустойчивой. Постепенно (в течение нескольких часов) она меняет окраску на желтую, становится хрупкой и превращается в ромбическую.

При замораживании паров серы (сильно нагретых) жидким азотом образуется ее пурпурная модификация, которая является устойчивой при температурах ниже минус 80 °C.

В водной среде сера практически не растворяется. Однако характеризуется хорошей растворимостью в органических растворителях. Плохо проводит электричество и тепло.

Температура кипения серы равна 444,6 °C. Процесс кипения сопровождается выделением оранжево-желтых паров, состоящих преимущественно из молекул S 8 , которые при последующем нагревании диссоциируют, в результате чего образуются равновесные формы S 6 , S 4 и S 2 . Далее при нагревании происходит распад крупных молекул, и при температуре выше 900 градусов пары состоят практически только из молекул S 2, диссоциирующих на атомы при 1500 °С.

Какими химическими свойствами обладает сера?

Сера является типичным неметаллом. Химически активна. Окислительно- восстановительные свойства серы проявляются по отношению к множеству элементов. При нагревании легко соединяется практически со всеми элементами, что объясняет ее обязательное присутствие в металлических рудах. Исключение составляют Pt, Au, I 2 , N 2 и инертные газы. Степени окисления, которые проявляет сера в соединениях, -2, +4, +6.

Свойства серы и кислорода обуславливают горение ее на воздухе. Результатом такого взаимодействия является образование сернистого (SO 2) и серного (SO 3) ангидридов, использующихся для получения сернистой и серной кислот.

При комнатной температуре восстановительные свойства серы проявляются только в отношении фтора, в реакции с которым образуется :

  • S + 3F 2 = SF 6 .

При нагревании (в виде расплава) взаимодействует с хлором, фосфором, кремнием, углеродом. В результате реакций с водородом кроме сернистого водорода образует сульфаны, объединенные общей формулой H 2 S Х.

Окислительные свойства серы наблюдаются при взаимодействии с металлами. В некоторых случаях можно наблюдать довольно бурные реакции. В результате взаимодействия с металлами образуются соединения) и полисульфиды (многосернистые металлы).

При длительном нагревании вступает в реакции с концентрированными кислотами-окислителями, окисляясь при этом.

Диоксид серы

Оксид серы (IV), называемый также диоксидом серы и ангидридом сернистым, представляет собой газ (бесцветный) с резким удушающим запахом. Имеет свойство сжижаться под давлением при комнатной температуре. SO 2 является кислотным оксидом. Характеризуется хорошей растворимостью в воде. При этом образуется слабая, неустойчивая сернистая кислота, существующая только в водном растворе. В результате взаимодействия сернистого ангидрида со щелочами образуются сульфиты.

Отличается довольно высокой химической активностью. Наиболее ярко выраженными являются восстановительные химические свойства оксида серы (IV). Такие реакции сопровождаются повышением степени окисления серы.

Окислительные химические свойства оксида серы проявляются в присутствии сильных восстановителей (например, оксида углерода).

Триоксид серы

Триоксид серы (ангидрид серный) - серы (VI). В обычных условиях представляет собой бесцветную легколетучую жидкость, характеризующуюся удушающим запахом. Имеет свойство застывать при температурных значениях ниже 16,9 градуса. При этом образуется смесь разных кристаллических модификаций твердого триоксида серы. Высокие гигроскопические свойства оксида серы обуславливают его "дымление" в условиях влажного воздуха. В результате образуются капельки серной кислоты.

Сероводород

Сероводород является бинарным химическим соединением водорода и серы. H 2 S - это ядовитый бесцветный газ, характерными особенностями которого являются сладковатый вкус и запах протухших яиц. Плавится при температуре минус 86 °С, кипит при минус 60 °С. Неустойчив термически. При температурных значениях выше 400 °С происходит разложение сернистого водорода на S и H 2 . Характеризуется хорошей растворимостью в этаноле. В воде растворяется плохо. В результате растворения в воде образуется слабая сероводородная кислота. Сероводород является сильным восстановителем.

Огнеопасен. При его горении в воздухе можно наблюдать синее пламя. В больших концентрациях способен вступать в реакции со многими металлами.

Серная кислота

Серная кислота (H 2 SO 4) может быть разной концентрации и чистоты. В безводном состоянии является бесцветной маслянистой жидкостью, не имеющей запаха.

Значение температуры, при котором вещество плавится, составляет 10 °С. Температура кипения равна 296 °С. В воде растворяется хорошо. При растворении серной кислоты образуются гидраты, при этом выделяется большое количество теплоты. Температура кипения всех водных растворов при давлении 760 мм рт. ст. превышает 100 °С. Повышение точки кипения происходит с увеличением концентрации кислоты.

Кислотные свойства вещества проявляются при взаимодействии с и основаниями. H 2 SO 4 является двухосновной кислотой, за счет чего может образовывать как сульфаты (средние соли), так и гидросульфаты (кислые соли), большинство из которых растворимы в воде.

Наиболее ярко свойства серной кислоты проявляются в окислительно-восстановительных реакциях. Это объясняется тем, что в составе H 2 SO 4 у серы высшая степень окисления (+6). В качестве примера проявления окислительных свойств серной кислоты можно привести реакцию с медью:

  • Cu + 2H 2 SO 4 = CuSO 4 + 2H 2 O + SO 2 .

Сера: полезные свойства

Сера является микроэлементом, необходимым для живых организмов. Является составной частью аминокислот (метионина и цистеина), ферментов и витаминов. Данный элемент принимает участие в образовании третичной структуры белка. Количество химически связанной серы, содержащейся в белках, составляет по массе от 0,8 до 2,4%. Содержание элемента в организме человека составляет около 2 граммов на 1 кг веса (то есть примерно 0,2% составляет сера).

Полезные свойства микроэлемента трудно переоценить. Защищая протоплазму крови, сера является активным помощником организма в борьбе с вредными бактериями. От ее количества зависит свертываемость крови, то есть элемент помогает поддерживать ее достаточный уровень. Также сера играет не последнюю роль в поддержании нормальных значений концентрации желчи, вырабатываемой организмом.

Часто ее называют «минералом красоты», поскольку она просто необходима для сохранения здоровья кожи, ногтей и волос. Сере присуща способность предохранять организм от различных видов негативного воздействия окружающей среды. Это способствует замедлению процессов старения. Сера очищает организм от токсинов и защищает от радиации, что особенно актуально в настоящее время, учитывая современную экологическую обстановку.

Недостаточное количество микроэлемента в организме может привести к плохому выведению шлаков, снижению иммунитета и жизненного тонуса.

Сера - участница бактериального фотосинтеза. Она является составляющей бактериохлорофилла, а сернистый водород - источником водорода.

Сера: свойства и применение в промышленности

Наиболее широко сера используется для Также свойства данного вещества позволяют применять его для вулканизации каучука, в качестве фунгицида в сельском хозяйстве и даже лекарственного препарата (коллоидная сера). Кроме того, серу используют для производства спичек и она входит в состав серобитумных композиций для изготовления сероасфальта.

а) В пробирку, укрепленную в держателе, насыпать до поло­вины ее объема кусочков черенковой серы и очень осторожно нагревать, все время встряхивая. Сера начнет плавиться, образуя желтую подвижную жидкость. Выше 160° жид­кость темнеет, а при 200° становится темнокоричневой и настоль­ко вязкой, что не выливается из пробирки. Выше 250° вязкость снова Уменьшается и при 400° сера превращается в легкопод­вижную жидкость темнокоричневого цвета, которая при 444,5°закипает, образуя оранжево-желтые пары. Объяснить изменения, происходящие при нагревании расплавленной серы.

б) Вылить кипящую серу тонкой струей в стакан с холодной водой. Если сера вспыхнет, следует после выливания прикрыть отверстие пробирки крышкой от тигля или куском асбеста. До­стать из воды полученную массу и убедиться в ее пластичности. Сохранить образовавшуюся пластическую серу, чтобы просле­дить переход аморфной формы в кристаллическую.

Получение ромбической серы

Поместить в пробирку 2-3 кусочка черенковой серы величи­ной с горошину, прибавить 2 мл сероуглерода и, встряхивая, рас­творить серу. Сероуглерод - легкогорючая жидкость, и все ра­боты с ним нужно проводить вдали от огня. Несколько капель полученного раствора вылить на часовое стекло. Дать испарить­ся сероуглероду и наблюдать выделение ромбических кристаллов серы.

3)Возгонка красного фосфора

В пробирку положить немного красного фосфора, закрыть ее ватой и, закрепив горизонтально в штативе, слегка нагре­вать пламенем горелки. Красный фосфор испаряется, и на хо­лодных частях пробирки осаждается налет белого. Опыт про­изводить осторожно, все время следить за тем, чтобы пары фосфора при выходе из пробирки не загорались.

4) Горение фосфора под водой

а) Кусочек белого фосфора положить в стакан с водой и нагреть воду до 60-70°. Затем пропустить из газометра сла­бый ток кислорода, держа отводную трубку так, чтобы она касалась фосфора. Последний загорается. Написать уравнение реакция.

б) Проделать то же самое, заменив белый фосфор красным. Красный фосфор не горит под водой.

1. Фосфорный ангидрид и его свойства

(Работа производится под тягой)

В фарфоровую чашку (или на крышку тигля), поставленную на асбестированную сетку, положить 0,4-0,5 г красного фос­фора. Над чашкой на небольшом расстоянии (около 0,5 см) от сетки укрепить сухую воронку. Зажечь фосфор накаленной стеклянной палочкой. На стенках воронки осаждается фосфор­ный ангидрид, образующийся при горении фосфора, в виде белой, похожей на сиег кристаллической массы.

Когда весь фосфор сгорит, вложить воронку в кольцо шта­тива и оставить на некоторое время. Фосфорный ангидрид очень быстро расплывается. На какое свойство Р 2 О 5 указывает это явление?

2. Получение фосфорных кислот

а) Фосфорный ангидрид, полученный в предыдущем опыте, смыть дестиллированной водой со стенок воронки в пробирку. Когда раствор сделается прозрачным, отлить его немного в другую пробирку и добавить в последнюю избыток раствора AgN0 3 . Образуется белый осадок AgP0 3 . Написать уравнения реакций.

б) Оставшуюся часть раствора Н 3 РО 4 вылить в стакан, до­бавить 10-15 мл воды и 1-2 мл концентрированной HNO 3

3. Действие щелочных металлов на воду

(Работа производится за стеклом вытяжного шкафа!)

Взять три фарфоровые чашки с водой. Отрезать ножом по маленькому кусочку лития, натрия и калия, обсушив их фильтровальной бумагой, бросить в воду: в одну чашку -ли­тий, в другую - натрий, в третью - калий. Наблюдать за хо­дом реакции через стекло вытяжного шкафа. Защита стеклом необходима ввиду разбрызгивания, имеющего место при конце реакций. Отметить, что наиболее энергично с водой реагирует калий, а наименее энергично - литий. Испытать лакмусом или фенолфталеином полученные растворы. Написать уравнений реакций.

Получение калийной селитры

В стаканчик, содержащий 20 мл воды, внести 7,5 г КС1 и растворить при нагревании; затем добавить 8,5 г измельчен­ного NaN03. Содержимое стаканчика кипятить в течение не­скольких минут, после чего быстро отфильтровать жидкость от образовавшегося осадка NaCl, пользуясь укороченной стек­лянной воронкой (с отрезанной трубкой). Дать раствору охла­диться и наблюдать выделение кристаллов KN0 3 . Отделитькристаллы путем декантации маточного раствора и высушить их между листами фильтровальной бумаги.Объяснить явления, наблюдаемые при опыте, исходя из растворимости солей, которые могут образоваться в растворе

5. Реакция открытия ионов Na - и К"

а) Налить в пробирку нейтральный раствор какой-нибудь соли натрия и добавить нахолоду крепкий (лучше свежепри­готовленный) раствор кислого пиросурьмянокислого калия K 2 H 2 Sb 2 0 7 . Наблюдать выпадение белого кристаллического осадка Na 2 H 2 Sb 2 0 7 . В случае надобности выпадение осадка можно ускорить трением стеклянной палочки о стенки пробир­ки. Написать уравнение реакции в молекулярной и ионной формах.

б) К нейтральному раствору какой-нибудь калиевой соли прилить раствор кислого виннокислого натрия NaHC4H 4 0 6 и взболтать. Наблюдать выпадение белого кристаллического осадка КНС4Н4О6. Написать уравнение реакции в молекуляр­ной и ионной формах.

Вопросы

1. Что общего в процессах горения натрия в хлоре, взаимодействия натрия с водой и взаимодействия натрия с серной кислотой?

2. Какие из нижеследующих солей калия будут подвергаться замет­ному гидролизу: КС1, KNO3, K 2 S, К 2 СОз, СН 3 СООК?

3. Почему пластическая сера полностью не растворяется в серо­углероде?

4. Как можно удалить сероводород из смеси газов?

5. Можно ли применять азотную кислоту для получения сероводорода из его солей?

6. Почему сероводород является восстановителем и не проявляет окислительных свойств?

Исследовательское обучение
в практике преподавания химии

Ч еловек по своей природе – исследователь. Особенно ярко поисковая активность проявляется в юном возрасте, когда небольшой жизненный опыт не дает возможности получить ответы на все интересующие вопросы.

Учитель может использовать это природное стремление к поиску в своей образовательной деятельности, координируя переход от спонтанного интереса учащихся к природным объектам и явлениям к конструктивным, сознательным, логически выверенным действиям . Цель такой работы – формирование ключевых компетенций учащихся: образовательной, методологической, коммуникативной, экспериментальной. Исследовательский метод особенно эффективен в практике обучения химии, т.к. он дополняется школьным экспериментом.

Существует масса методических приемов и дидактических методов, позволяющих вовлекать учащихся в исследовательскую деятельность. Можно организовать эту работу, комбинируя объяснительно-иллюстративный метод обучения с эвристическим методом, проводя лабораторные и практические работы исследовательского характера, развивая навыки творческой работы с литературными источниками.

Сущность эвристического метода обучения предлагается рассмотреть на примере урока в 8-м классе по теме «Периодический закон и периодическая система химических элементов Д.И.Менделеева». На первом этапе изучения темы учащиеся делают карточки со знаками химических элементов, изображая знаки металлов черным, неметаллов – красным цветом. На этих карточках указываются относительные атомные массы элементов, важнейшие характеристики как простых веществ, образованных атомами этих элементов, так и их соединений: оксидов и гидроксидов.

На следующем этапе учащиеся раскладывают эти карточки по мере увеличения атомных масс в один ряд, самостоятельно замечая в ходе работы периодичность в изменении свойств простых веществ и кислотно-основных характеристик соединений химических элементов. Чаще всего далее следует предложение разделить общий ряд карточек на самостоятельные подразделения, которые начинаются со щелочного металла и заканчиваются инертным газом. Так мы получаем периоды периодической системы химических элементов (ПСХЭ), даем им определение, отмечаем закономерности изменения физико-химических свойств простых веществ и соответствующих соединений.

Сформировав таким способом несколько периодов химических элементов, ребята понимают, что в столбцах друг под другом располагаются элементы со сходными характеристиками. В результате мы «открываем» группы ПСХЭ, даем им определение, отмечаем наличие главных и побочных подгрупп, закономерности изменения химических свойств в подгруппах.

Таким образом, в сущности мы моделируем логику Д.И.Менделеева по открытию периодического закона.

Для учащихся старших классов аналогичный метод может быть применен в усложненном виде: периодический закон формулируется, ПСХЭ формируется в свете теории строения атомов, прослеживаются закономерности изменения количества элементарных частиц, атомного радиуса .

П ри обучении органической химии эвристический метод может быть применен после освоения учащимися таких понятий, как «кратные связи», «предельные и непредельные соединения», «функциональные группы», «качественные реакции».

Исследование зависимости свойств бензола от его химического строения начинают с противоречия: согласно формуле Ф.А.Kекуле бензол должен проявлять свойства непредельных углеводородов, т. е. взаимодействовать с бромной водой и водным раствором перманганата калия, но эти реакции не наблюдаются. Дальнейшее изучение строения молекулы бензола показывает, что единое p-облако электронов выравнивает связи по всему бензольному кольцу, и для этого представителя ароматических углеводородов более характерны реакции замещения . Такой проблемный способ решения учебной задачи позволяет следовать логике научного познания, приводит к качественному усвоению учебного материала.

При изучении строения глюкозы в курсе органической химии логика объяснения нового материала может быть обратная (от свойств – к строению): учащиеся проводят реакции раствора глюкозы с аммиачным раствором оксида серебра и раствора глюкозы со свежеприготовленным осадком гидроксида меди(II) при комнатой температуре. Первая реакция («серебряное зеркало») свидетельствует о наличии карбонильной группы, вторая – о присутствии нескольких гидроксигрупп в молекуле глюкозы. Далее учитель поясняет, что 1 моль глюкозы вступает в реакцию этерификации с 5 моль уксусного ангидрида (СН 3 СО) 2 О. Следовательно, гидроксигрупп – пять. Таким образом, мы доказываем, что глюкоза – это альдегидоспирт. Тривиальное задание для учащихся по школьному пособию можно превратить в увлекательное исследование неизвестной ранее информации. Учителю достаточно использовать несколько методических приемов: мотивировать процесс работы с учебным материалом, научить выбирать нужную информацию и фиксировать ее в компактном виде (таблицы, схемы). Очень важно заронить в этот процесс зерно конкуренции: самая подробная таблица, рациональная схема, логически выверенная цепочка должны быть отмечены по окончании работы.

При изучении в 9-м классе темы «Сера» учащимся предварительно демонстрируется ромбическая сера до нагревания, процесс плавления кристаллической серы и получившаяся в результате коричневая жидкость, представляющая собой пластическую серу. Далее предлагается заполнить сводную таблицу «Сравнительная характеристика аллотропных модификаций серы», используя материал учебного пособия .

Таблица

Сравнительная характеристика аллотропных модификаций серы

Вопросы характеристики Ромбическая сера Пластическая сера
Химическая формула S 8 S n
Физические свойства Лимонно-желтые полупрозрачные кристаллы с t пл = 112,8 °С. Нерастворима в воде, малорастворима в этиловом спирте и диэтиловом эфире, хорошо растворяется в сероуглероде. Порошок серы плавает на поверхности воды, кристаллы серы тонут в воде Прозрачная резинообразная масса темно-коричневого цвета, вытягивается в эластичные нити
Возможные переходы в другую модификацию Переходит в пластическую серу при нагревании Через несколько дней превращается в ромбическую серу

По окончании работы проводится фронтальная проверка в виде устного опроса учащихся, которые дают характеристику ромбической и пластической серы, используя таблицу.

В связи с сокращением количества времени, отводимого на изучение курса неорганической химии в 9-м классе, проблема ознакомления учащихся с основами местных химических производств может быть решена за счет школьного или регионального компонента. В предлагаемом далее примере используется проблемное обучение [см. 1], дополняющее исследовательский метод.

Градообразующее предприятие нашего города – ОАО «Североникель». Среди товарной продукции предприятия – высококачественная серная кислота. По моему убеждению, учащиеся, большинство которых будет работать на комбинате, должны понимать элементарные основы технологического процесса, происходящего при производстве продукции. Поэтому я не исключаю тему «Производство серной кислоты» из содержания курса.

Актуализация знаний, мотивация происходит в начале работы: демонстрируются образцы местной и норильской руд, среди особенностей последней отмечается высокое содержание серы. Учащимся напоминается знакомая с детства картина – периодические выбросы в атмосферу сернистого газа. Защита окрестностей от поражения сернистым газом в первую очередь решается расширением серно-кислотного производства, эффективно утилизирующим основную массу серы из газов металлургических печей.

В ходе работы используются материалы учебного пособия, демонстрационная таблица «Производство серной кислоты контактным способом» и дополнительная информация регионального содержания. В результате работы над этой темой составляется упрощенная схема технологического процесса производства серной кислоты, сопровождаемая соответствующими уравнениями реакций.

Для учащихся это исследование актуально, оно касается решения жизненно важной проблемы.

Использование в учебном процессе практических работ исследовательского характера способствует активизации познавательного интереса учащихся, расширяет возможности для индивидуального и дифференцированного подхода к обучению, повышает творческую активность. Современная программа курса химии О.С.Габриеляна позволяет проводить практические работы исследовательской направленности начиная с 8-го класса: «Наблюдения за горящей свечой», «Анализ почвы и воды» . Для 9-го класса приводятся практические работы «Решение экспериментальных задач на распознавание важнейших катионов и анионов», «Практическое осуществление превращений веществ», «Решение экспериментальных задач на распознавание органических веществ» [см. 4].

В старших классах исследовательский характер практических работ усложняется: «Идентификация органических соединений», «Обнаружение витаминов», «Действие ферментов на различные вещества» – в 10-м классе ; «Получение, собирание и распознавание газов и изучение их свойств», «Сравнение свойств неорганических и органических соединений», «Решение экспериментальных задач по теме “Гидролиз” – в 11-м классе . При этом лабораторные и практические работы проводятся в течение изучения темы или сразу по ее окончании, по «свежим следам». Это позволяет поддерживать интерес к изучаемому материалу.

П рименяя исследовательский метод обучения на уроке, мы можем быть уверены, что некоторые учащиеся, обладающие оригинальным и гибким мышлением, выразят желание заняться исследовательскими проектами и во внеурочное время. На этом этапе важнейшее значение имеет выбор темы. Опыт показывает, что подростка интересует прежде всего то, что связано с его жизнью, здоровьем, бытом.

Так появилась на свет исследовательская работа «Дело вкуса», в которой учащиеся 9-го класса изучали влияние возраста, физических, психологических нагрузок, пола и вредных привычек на формирование вкуса. Измеряя абсолютные вкусовые пороги подростков в возрасте 14, 16–17 лет, а также взрослых людей в возрасте 40–60 лет, юные исследователи пришли к следующим выводам:

Девушки и юноши имеют разные вкусовые пороги на различные вкусовые ощущения (оказывается, юноши – настоящие сладкоежки);

С возрастом вкусовые пороги меняются;

Значительные и систематические физические нагрузки требуют дополнительной энергии, спортсмены становятся выраженными сладкоежками поневоле;

Интеллектуальная работа требует не меньших затрат энергии, чем физическая, и приводит к повышению потребности организма в дополнительном поступлении «быстрых» углеводов и, как следствие, повышению абсолютного вкусового порога;

Курение негативно влияет не только на дыхательную систему, но и на полноту вкусовых ощущений человека;

Существуют способы диагностирования различных заболеваний по расстройствам вкуса.

В заключение ребята обобщают: человек есть не только то, что он ест , но и какой образ жизни ведет, дает ли он возможность своему телу развиваться в соответствии с заложенным генотипом и совершенствоваться в соответствии с общечеловеческими понятиями о пользе и красоте.

Е сть еще одно направление исследовательской работы, неизменно вызывающее интерес учащихся, – экология и охрана окружающей среды. На протяжении нескольких лет я координирую исследовательские работы учащихся нашей школы по экологическому мониторингу г. Мончегорска.

Исследование «Голубая лагуна для жемчужины Заполярья» (2002) посвящено проблемам загрязнения водоемов на территории города. В работе «Экологические ловушки» (2004) изучен уровень загрязненности воздуха вблизи наиболее загруженных участков автодорог Мончегорска. Она является компактной, статистически выверенной работой бывших учащихся 11-го класса Глафиры Рыжковой и Натальи Семеновой, ныне студенток Санкт-Петербургского химико-технологического университета. В процессе исследования учащиеся сделали вывод, что некоторые районы города являются местами, где многократно превышаются ПДK угарного газа, т.е. настоящими «экологическими ловушками».
В ходе выполнения этой работы авторы активно сотрудничали с работниками мончегорской ГИБДД, принимали участие в ежегодной операции «Чистый воздух» по выявлению чадящих автомобилей.

Весной 2006 г. учащимися 9-го класса была завершена работа «Мониторинг состояния снежного покрова», посвященная исследованиям уровня загрязненности снежного покрова некоторых наиболее населенных районов Мончегорска. Авторы работы пришли к интересным выводам:

Основным загрязнителем снежного покрова на территории города можно считать не комбинат «Североникель», а дворы обычных многоэтажных домов с их дымящимися, часто неопрятными мусорными контейнерами и чадящими автомобилями, чьи хозяева не соблюдают правила парковок; это приводит к дополнительному закислению снежного покрова и увеличению содержания твердых частиц в пробах снега;

С переходом комбината «Североникель» на новые технологии (переход от пирометаллургических к гидрометаллургическим способам получения металлов) роль его как стационарного источника выбросов уменьшилась, показатели проб, взятых у проходной комбината, по кислотности и содержанию твердого осадка не превышали показатели проб из других мест забора (за исключением территории городского парка);

Тревожные факты повышенной кислотности проб снега, взятых в районе перекрестка автомобильных дорог, говорят о том, что на наших дорогах по-прежнему много автотранспорта, работающего без применения каталитических нейтрализаторов, снижающих токсичность выхлопных газов;

Слабое закисление проб снега, взятых в районе городского парка, говорит о том, что он тоже не является идеально чистой территорией с точки зрения экологии.

Kроме того, юные исследователи поняли, что экологическое благополучие наших городов во многом зависит от корректного решения простых бытовых и житейских проблем: содержать в порядке свои дворы, правильно парковать автомобиль, вовремя его отремонтировать, не оставлять мусор после ремонта или строительства.

«Мы готовы сотрудничать с городским экологическим центром по проведению экологического мониторинга нашего города, можем предоставить результаты нашей работы для осуществления экологического воспитания на классных часах. Нам очень хочется, чтобы заснеженный Мончегорск был похож на зимнюю сказку», – пишут авторы в заключительной части работы.

Специалисты отмечают, что в современном стремительно меняющемся мире развитое исследовательское поведение можно рассматривать как неотъемлемую характеристику личности, как стиль жизни современного человека. Подготовка ребенка к исследовательской деятельности, обучение его умениям и навыкам исследовательского поиска становится важнейшей задачей современного образования.

Л и т е р а т у р а

1. Леднева С.А . Юный исследователь: обучение и развитие. Исследовательская работа школьников, 2004, № 1, с. 171–173.

2. Bolmgren I . Journal of Chemical Education, 1995, № 4, р. 337–338.

3. Артеменко А.А . Органическая химия. М.: Просвещение, 2001.

4. Габриелян О.С . Химия. 9 класс. М.: Дрофа, 2001.

5. Габриелян О.С . Химия. 8 класс. М.: Дрофа, 2001.

6. Габриелян О.С . и др . Химия. 10 класс. М.: Дрофа, 2001.

7. Габриелян О.С . и др . Химия. 11 класс. М.: Дрофа, 2001.

Элемент сера S - твёрдое, хрупкое, жёлтое кристаллическое вещество с температурой плавления 119,3°С. Но не надо путать эту серу с серой на спичках.

На головках спичек в основном находятся сложные вещества, одним из которых - хлорат калия (KClO3), которое способно самовоспламеняться при трении или температуре.

Элемент сера - простое вещество и здесь присутствует в качестве одного из компонентов, составляющих спичечную головку.

Модификации серы

Существует две модификации серы: хрупкая сера и пластическая сера. При 113 °С кристаллическая сера плавится, превращаясь в жёлтую водянистую жидкость.

Расплавленная сера при температуре 187°С становится очень вязкой и быстро темнеет. При этом меняется её структурное состояние. А если нагреть серу до 445 °С, она закипает.

Выливая кипящую серу тонкой струйкой в холодную воду, можно получить пластическую серу - резиноподобную модификацию, состоящую из полимерных цепочек.

В этом состоянии сера способна деформироваться, растягиваться, при этом материал не разрушается. Но стоит ей полежать несколько дней на воздухе, как она превращается опять в хрупкий материал.

Элемент сера - диэлектрик. Она может служить теплоизолятором. Сера легко окисляет почти все металлы, кроме золота Au, платины Pt и рутения Ru.

Элемент сера окисляет даже при комнатной температуре щелочные (натрий Na, калий K, литий Li, кальций Ca) и щелочноземельные металлы (алюминий Al, магний Mg).

На воздухе кристаллическая сера горит синим пламенем с образованием диоксида серы SO2 (газ с неприятным удушливым запахом).

Если сжигать кристаллическую серу в атмосфере водорода, то образуется газ с запахом протухших яиц. Это сероводород H2S. Если Вы проезжали мимо шельфа Чёрного моря, то наверняка чувствовали этот запах.

Чёрное море, начиная с глубины уже 150 м имеет повышенную концентрацию сероводорода. А на мелководье этот газ выходит наружу. Этим объясняется тот факт, что на глубине порядка уже 150 м практически нет жизни.

Физические свойства

Сера существенно отличается от кислорода способностью образовывать устойчивые гомоцепи. Наиболее стабильны циклические молекулы S8, имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера - хрупкое вещество желтого цвета.

Кроме того, возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета. Формулу пластической серы чаще всего записывают просто S, так как она имеет атомарную структуру, а не молекулярную. В воде сера нерастворима, некоторые её модификации растворяются в органических растворителях, например сероуглероде.

Химические свойства

При комнатной температуре сера реагирует со фтором, хлором и концентрированными кислотами-окислителями (HNO3, H2SO4), проявляя восстановительные свойства: S + 3F2 = SF6 S + Cl2 = SCl2 S + 6HNO3(конц.) = H2SO4 + 6NO2 ^ + 2H2O S + 2H2SO4(конц.) = 3SO2 ^ + 2H2O На воздухе сера горит, образуя сернистый ангидрид - бесцветный газ с резким запахом: S + O2 = SO2 При взаимодействии с металлами образует сульфиды.

При нагревании сера реагирует с углеродом, кремнием, фосфором, водородом: C + 2S = CS2 (сероуглерод). Сера при нагревании растворяется в щелочах - реакция диспропорционирования 3S + 6KOH = K2SO3 + 2K2S + 3H2O.

Полезные и лечебные свойства серы

Сера – это макроэлемент. Она входит в состав таких аминокислот, как метионин и цистин. Сера содержится также в витамине тиамин и ферменте инсулин.

Она активно помогает организму бороться с вредными бактериями, защищая протоплазму крови.

Свертываемость крови также зависит от количества серы – она помогает поддерживать достаточный уровень свертываемости.

Еще одна способность серы также делает ее необходимой – она способствует поддержанию нормальной концентрации вырабатываемой организмом желчи, что необходимо для переваривания пищи.

Замечательное свойство серы – замедлять процессы старения организма. Из-за одного этого свойства серу можно назвать королевой макроэлементов. Не будем делать это лишь из-за понимания того, что все минеральные вещества действуют в комплексе.

Замедление старения возможно благодаря способности серы предохранять организм от радиации и других подобных воздействий окружающей среды.

Это очень важно в условиях современной экологии и постоянного нахождения человека вблизи электроприборов и различных волновых излучателей.

Сера также жизненно необходима при синтезе коллагена. Это известное вещество придает коже необходимую структуру. Трио «кожа, ногти, волосы» сохраняют здоровый вид во многом благодаря этому макроэлементу.

Так что не стоит употреблять искусственный коллаген или делать инъекции – достаточно есть продукты, богатые серой. Ровный и стойкий загар также зависит от серы, т.к. она входит в пигмент кожи меланин.

Сера содержится в гемоглобине. А мы знаем, что от уровня гемоглобина в крови напрямую зависит транспортировка кислорода к клеткам тканей организма из органов дыхания и перемещение углекислого газа из клеток в органы дыхания.

То есть возможность насыщать кровь кислородом и тем самым обеспечивать человека жизненной энергией.

Потребность организма в сере

За одни сутки организм взрослого человека должен получить от 1 до 3 г серы – тогда он будет чувствовать себя бодрым и полным сил. Где содержится сера?

Продукты, содержащие серу

Чтобы получить необходимое количество этого вещества, нужно употреблять в пищу следующие продукты:

Брюссельскую капусту

Белокочанную капусту

Проростки пшеницы.

Диетологи говорят, что наибольшее количество серы содержится в перепелиных яйцах. Недаром их считают панацеей для выведения радионуклидов из организма. Однако куриные яйца также содержат много серы.