Физические свойства оксида железа 3. Железо и его соединения

Желе́зо - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.

Основные степени окисления — +2, +3

Простое вещество железо - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Химические свойства простого вещества — железа:

Ржавление и горение в кислороде

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O 2 + 6H 2 O → 4Fe(OH) 3

Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):

3Fe + 2O 2 → Fe 3 O 4

3Fe+2O 2 →(Fe II Fe 2 III)O 4 (160 °С)

2) При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H 2 O – t° → Fe 3 O 4 + 4H 2 ­

3) Железо реагирует с неметаллами при нагревании:

2Fe+3Cl 2 →2FeCl 3 (200 °С)

Fe + S – t° → FeS (600 °С)

Fe+2S → Fe +2 (S 2 -1) (700°С)

4) В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н 2 SO 4 , при этом образуются соли железа(II) и выделяется водород:

Fe + 2HCl → FeCl 2 + H 2 ­ (реакции проводятся без доступа воздуха, иначе Fe +2 постепенно переводится кислородом в Fe +3)

Fe + H 2 SO 4 (разб.) → FeSO 4 + H 2 ­

В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе 3+ :

2Fe + 6H 2 SO 4 (конц.) – t° → Fe 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O

Fe + 6HNO 3 (конц.) – t° → Fe(NO 3) 3 + 3NO 2 ­ + 3H 2 O

(на холоде концентрированные азотная и серная кислоты пассивируют

Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди

5) Железо вытесняет металлы, стоящие правее его в из растворов их солей.

Fe + CuSO 4 → FeSO 4 + Cu

Амфотерность железа проявляется только в концентрированных щелочах при кипячении:

Fе + 2NaОН (50 %) + 2Н 2 O= Nа 2 ↓+ Н 2

и образуется осадок тетрагидроксоферрата(II) натрия.

Техническое железо - сплавы железа с углеродом: чугун содержит 2,06-6,67 % С, сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.

Доменный процесс производства чугуна

Доменный процесс производства чугуна составляют следующие стадии:

а) подготовка (обжиг) сульфидных и карбонатных руд - перевод в оксидную руду:

FeS 2 →Fe 2 O 3 (O 2 ,800°С, -SO 2) FeCO 3 →Fe 2 O 3 (O 2 ,500-600°С, -CO 2)

б) сжигание кокса при горячем дутье:

С (кокс) + O 2 (воздух) →СO 2 (600-700°С) СO 2 + С (кокс) ⇌ 2СО (700-1000 °С)

в) восстановление оксидной руды угарным газом СО последовательно:

Fe 2 O 3 →(CO) (Fe II Fe 2 III)O 4 →(CO) FeO→(CO) Fe

г) науглероживание железа (до 6,67 % С) и расплавление чугуна:

Fе (т) →(C (кокс) 900-1200°С) Fе (ж) (чугун, t пл 1145°С)

В чугуне всегда в виде зерен присутствуют цементит Fe 2 С и графит.

Производство стали

Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (СО 2 , SО 2), либо связываются в легко отделяемый шлак — смесь Са 3 (РO 4) 2 и СаSiO 3 . Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Получение чистого железа в промышленности — электролиз раствора солей железа, например:

FеСl 2 → Fе↓ + Сl 2 (90°С) (электролиз)

(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).

Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь - как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.

Оксид железа(II) F еО . Амфотерный оксид с большим преобладанием основных свойств. Черный, имеет ионное строение Fе 2+ O 2- . При нагревании вначале разлагается, затем образуется вновь. Не образуется при сгорании железа на воздухе. Не реагирует с водой. Разлагается кислотами, сплавляется со щелочами. Медленно окисляется во влажном воздухе. Восстанавливается водородом, коксом. Участвует в доменном процессе выплавки чугуна. Применяется как компонент керамики и минеральных красок. Уравнения важнейших реакций:

4FеО ⇌(Fe II Fe 2 III) + Fе (560-700 °С, 900-1000°С)

FеО + 2НС1 (разб.) = FеС1 2 + Н 2 O

FеО + 4НNO 3 (конц.) = Fе(NO 3) 3 +NO 2 + 2Н 2 O

FеО + 4NаОН =2Н 2 O + N а 4 F е O 3(красн .) триоксоферрат(II) (400-500 °С)

FеО + Н 2 =Н 2 O + Fе (особо чистое) (350°С)

FеО + С (кокс) = Fе + СО (выше 1000 °С)

FеО + СО = Fе + СO 2 (900°С)

4FеО + 2Н 2 O (влага) + O 2 (воздух) →4FеО(ОН) (t)

6FеО + O 2 = 2(Fe II Fe 2 III)O 4 (300-500°С)

Получение в лаборатории : термическое разложение соединений железа (II) без доступа воздуха:

Fе(ОН) 2 = FеО + Н 2 O (150-200 °С)

FеСОз = FеО + СO 2 (490-550 °С)

Оксид дижелеза (III) – железа( II ) ( Fe II Fe 2 III)O 4 . Двойной оксид. Черный, имеет ионное строение Fe 2+ (Fе 3+) 2 (O 2-) 4 . Термически устойчив до высоких температур. Не реагирует с водой. Разлагается кислотами. Восстанавливается водородом, раскаленным железом. Участвует в доменном процессе производства чугуна. Применяется как компонент минеральных красок (железный сурик ), керамики, цветного цемента. Продукт специального окисления поверхности стальных изделий (чернение, воронение ). По составу отвечает коричневой ржавчине и темной окалине на железе. Применение брутто-формулы Fe 3 O 4 не рекомендуется. Уравнения важнейших реакций:

2(Fe II Fe 2 III)O 4 = 6FеО + O 2 (выше 1538 °С)

(Fe II Fe 2 III)O 4 + 8НС1 (разб.) = FеС1 2 + 2FеС1 3 + 4Н 2 O

(Fe II Fe 2 III)O 4 +10НNO 3 (конц.) =3Fе(NO 3) 3 + NO 2 + 5Н 2 O

(Fe II Fe 2 III)O 4 + O 2 (воздух) = 6Fе 2 O 3 (450-600°С)

(Fe II Fe 2 III)O 4 + 4Н 2 = 4Н 2 O + 3Fе (особо чистое, 1000 °С)

(Fe II Fe 2 III)O 4 + СО =ЗFеО + СO 2 (500-800°C)

(Fe II Fe 2 III)O4 + Fе ⇌4FеО (900-1000 °С, 560-700 °С)

Получение: сгорание железа (см.) на воздухе.

магнетит.

Оксид железа(III) F е 2 О 3 . Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+) 2 (O 2-) 3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе. Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе 2 O 3 nН 2 О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами). Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.

Уравнения важнейших реакций:

6Fе 2 O 3 = 4(Fe II Fe 2 III)O 4 +O 2 (1200-1300 °С)

Fе 2 O 3 + 6НС1 (разб.) →2FеС1 3 + ЗН 2 O (t) (600°С,р)

Fе 2 O 3 + 2NaОН (конц.) →Н 2 O+ 2 N а F е O 2 (красн.) диоксоферрат(III)

Fе 2 О 3 + МО=(М II Fе 2 II I)O 4 (М=Сu, Мn, Fе, Ni, Zn)

Fе 2 O 3 + ЗН 2 =ЗН 2 O+ 2Fе (особо чистое, 1050-1100 °С)

Fе 2 O 3 + Fе = ЗFеО (900 °С)

3Fе 2 O 3 + СО = 2(Fe II Fе 2 III)O 4 + СO 2 (400-600 °С)

Получение в лаборатории — термическое разложение солей железа (III) на воздухе:

Fе 2 (SO 4) 3 = Fе 2 O 3 + 3SO 3 (500-700 °С)

4{Fе(NO 3) 3 9 Н 2 O} = 2Fе a O 3 + 12NO 2 + 3O 2 + 36Н 2 O (600-700 °С)

В природе — оксидные руды железа гематит Fе 2 O 3 и лимонит Fе 2 O 3 nН 2 O

Гидроксид железа (II) F е(ОН) 2 . Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив. Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа. Применяется в изготовлении активной массы железоникелевых аккумуляторов.

Уравнения важнейших реакций:

Fе(OН) 2 = FеО + Н 2 O (150-200 °С, в атм.N 2)

Fе(ОН) 2 + 2НС1 (разб.) =FеС1 2 + 2Н 2 O

Fе(ОН) 2 + 2NаОН (> 50%) = Nа 2 ↓ (сине-зеленый) (кипячение)

4Fе(ОН) 2 (суспензия) + O 2 (воздух) →4FеО(ОН)↓ + 2Н 2 O (t)

2Fе(ОН) 2 (суспензия) +Н 2 O 2 (разб.) = 2FеО(ОН)↓ + 2Н 2 O

Fе(ОН) 2 + КNO 3 (конц.) = FеО(ОН)↓ + NO+ КОН (60 °С)

Получение : осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:

Fе 2+ + 2OH (разб.) = F е(ОН) 2 ↓

Fе 2+ + 2(NH 3 Н 2 O) = F е(ОН) 2 ↓ + 2NH 4

Метагидроксид железа F еО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде. Осаждается из раствора в виде бурого аморфного полигидрата Fе 2 O 3 nН 2 O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН) 2 . Промежуточный продукт при ржавлении железа. Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.

Соединение состава Fе(ОН) 3 не известно (не получено).

Уравнения важнейших реакций:

Fе 2 O 3 . nН 2 O→(200-250 °С, — H 2 O ) FеО(ОН)→(560-700° С на воздухе, -H2O) →Fе 2 О 3

FеО(ОН) + ЗНС1 (разб.) =FеС1 3 + 2Н 2 O

FeO(OH)→Fe 2 O 3 . nH 2 O -коллоид (NаОН (конц.))

FеО(ОН)→N а 3 [ F е(ОН) 6 ] белый , Nа 5 и К 4 соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFе III . В лаборатории этот осадок называют берлинская лазурь , или турнбуллева синь :

Fе 2+ + К + + 3- = КFе III ↓

Fе 3+ + К + + 4- = КFе III ↓

Химические названия исходных реактивов и продукта реакций:

К 3 Fе III - гексацианоферрат (III) калия

К 4 Fе III - гексацианоферрат (II) калия

КFе III - гексацианоферрат (II) железа (Ш) калия

Кроме того, хорошим реактивом на ионы Fе 3+ является тиоцианат-ион NСS — , железо (III) соединяется с ним, и появляется ярко-красная («кровавая») окраска:

Fе 3+ + 6NСS — = 3-

Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.


Оксид железа(III)

ТУ 6-09-1404-76

Fe 2 O 3

Оксид железа(III) - сложное неорганическое вещество, соединение железа и кислорода с химической формулой Fe 2 O 3 .

Оксид железа(III) - амфотерный оксид с большим преобладанием основных свойств. Красно-коричневого цвета. Термически устойчив к высоким температурам. Образуется при сгорании железа на воздухе. Не реагирует с водой. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды - шпинели.

В природе встречается как широко распространённый минерал гематит, примеси которого обусловливают красноватую окраску латерита, краснозёмов, а также поверхности Марса; другая кристаллическая модификация встречается как минерал маггемит.

Окись железа Fe 2 O 3 представляет собой кристаллы от красно-коричневого до черно-фиолетового цвета. Химикат термически устойчив. Нет реакции с водой. Медленная реакция с щелочами и кислотами.

Окись железа Fe 2 O 3 применяют в качестве сырья производства чугуна в доменном техпроцессе. Этот химикат является катализатором в техпроцессе изготовления аммиака. Он входит в керамику в качестве одного из компонентов, его применяют при изготовлении минеральных красок и цветных цементов. Окись железа Fe2O3 эффективна при термической сварке стальных элементов конструкций. С этим веществом связана запись звука и изображения на магнитных носителях. Fe2O3 является качественным полирующим средством для полировки стальных и стеклянных деталей.

В железном сурике является главной компонентой. Fe 2 O 3 в пищевой отрасли является достаточно распространенной пищевой добавкой E172.

Физические свойства

Состояние

твёрдое

Молярная масса

159,69 г/моль

Плотность

5,242 г/см³

Термические свойства

Т. плав.

1566 °C

Т. кип.

1987 °C

Давление пара

0 ± 1 мм рт.ст.

Fe 2 O 3 применяется при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок , при термитной сварке стальных конструкций, как носитель аналоговой и цифровой информации (напр. звука и изображения) на магнитных лентах (ферримагнитный γ -Fe 2 O 3), как полирующее средство (красный крокус) для стали и стекла.

В пищевой промышленности используется в качестве пищевого красителя (E172).

В ракетомоделировании применяется для получения катализированного карамельного топлива, которое имеет скорость горения на 80% выше, чем обычное топливо.

Является основным компонентом железного сурика (колькотара).

В нефтехимической промышленности используется в качестве основного компонента катализатора дегидрирования при синтезе диеновых мономеров .

Оксидами железа называют соединения железа с кислородом.

Наиболее известны три оксида железа: оксид железа (II) – FeO ,оксид железа (III ) – Fe 2 O 3 и оксид железа (II , III ) – Fe 3 O 4 .

Оксид железа (II)


Химическая формула оксида двухвалентного железа - FeO . Это соединение имеет чёрный цвет.

FeO легко реагирует с разбавленной соляной кислотой и концентрированной азотной кислотой.

FeO + 2HCl → FeCl 2 + H 2 O

FeO + 4HNO 3 → Fe(NO 3) 3 + NO 2 + 2H 2 O

С водой и с солями в реакцию не вступает.

При взаимодействии с водородом при температуре 350 о С и коксом при температуре выше 1000 о С восстанавливается до чистого железа.

FeO +H 2 → Fe + H 2 O

FeO +C → Fe + CO

Получают оксид железа (II) разными способами:

1. В результате реакции восстановления оксида трёхвалентного железа угарным газом.

Fe 2 O 3 + CO → 2 FeO + CO 2

2. Нагревая железо при низком давлении кислорода

2Fe + O 2 → 2 FeO

3. Разлагая оксалат двухвалентного железа в вакууме

FeC 2 O 4 → FeO +CO + CO 2

4. Взаимодействием железа с оксидами железа при температуре 900-1000 о

Fe + Fe 2 O 3 → 3 FeO

Fe + Fe 3 O 4 → 4 FeO

В природе оксид двухвалентного железа существует как минерал вюстит.

В промышленности применяется при выплавке чугуна в домнах, в процессе чернения (воронения) стали. Входит он в состав красителей и керамики.

Оксид железа (III )


Химическая формула Fe 2 O 3 . Это соединение трёхвалентного железа с кислородом. Представляет собой порошок красно-коричневого цвета. В природе встречается как минерал гематит.

Fe 2 O 3 имеет и другие названия: окись железа, железный сурик, крокус, пигмент красный 101, пищевой краситель E172 .

В реакцию с водой не вступает. Может взаимодействовать как с кислотами, так и со щелочами.

Fe 2 O 3 + 6HCl → 2 FeCl 3 + 3H 2 O

Fe 2 O 3 + 2NaOH → 2NaFeO 2 + H 2 O

Оксид железа (III) применяют для окраски строительных материалов: кирпича, цемента, керамики, бетона, тротуарной плитки, линолеума. Добавляют его в качестве красителя в краски и эмали, в полиграфические краски. В качестве катализатора оксид железа используется в производстве аммиака. В пищевой промышленности он известен как Е172.

Оксид железа (II, III )


Химическая формула Fe 3 O 4 . Эту формулу можно написать и по-другому: FeO Fe 2 O 3 .

В природе встречается как минерал магнетит, или магнитный железняк. Он является хорошим проводником электрического тока и обладает магнитными свойствами. Образуется при горении железа и при действии перегретого пара на железо.

3Fe + 2 O 2 → Fe 3 O 4

3Fe + 4H 2 O → Fe 3 O 4 + 4H 2

Нагревание при температуре 1538 о С приводит к его распаду

2Fe 3 O 4 → 6FeO + O 2

Вступает в реакцию с кислотами

Fe 3 O 4 + 8HCl → FeCl 2 + 2FeCl 3 + 4H 2 O

Fe 3 O 4 + 10HNO 3 → 3Fe(NO 3) 3 + NO 2 + 5H 2 O

Со щелочами реагирует при сплавлении

Fe 3 O 4 + 14NaOH → Na 3 FeO 3 + 2Na 5 FeO 4 + 7H 2 O

Вступает в реакцию с кислородом воздуха

4 Fe 3 O 4 + O 2 → 6Fe 2 O 3

Восстановление происходит при реакции с водородом и монооксидом углерода

Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O

Fe 3 O 4 + 4CO → 3Fe +4CO 2

Магнитные наночастицы оксида Fe 3 O 4 нашли применение в магнитно-резонансной томографии. Они же используются в производстве магнитных носителей. Оксид железа Fe 3 O 4 входит в состав красок, которые производятся специально для военных кораблей, подводных лодок и другой техники. Из плавленного магнетита изготавливают электроды для некоторых электрохимических процессов.

ОКСИД ЖЕЛЕЗА (III)

Применение

Применяется как сырьё при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель аналоговой и цифровой информации (напр. звука и изображения) на магнитных лентах (ферромагнитный?-Fe 2 O 3), как полирующее средство (красный крокус) для стали и стекла.

В пищевой промышленности используется в качестве пищевого красителя (E172).

В ракетомоделизме применяется для получения катализированого карамельного топлива, которое имеет скорость горения на 80% выше, чем обычное топливо.

Является основным компонентом железного сурика (колькотара).

Колькотар

Колькотар -- коричневая минеральная краска. Другие названия: парижская или английская красная краска, caput mortuum vitrioli, крокус, железный сурик; в алхимии -- красный лев.

По составу колькотар представляет более или менее чистую безводную окись железа. Хотя безводная окись железа и встречается в природе в очень больших количествах (красный железняк, железный блеск), но ценные сорта этой краски вырабатываются искусственно или получаются как побочный продукт при добывании нордгаузенской кислоты из железного купороса, а также при прокаливании основных серножелезных солей, выделяющихся из раствора при приготовлении железного купороса из купоросного камня.

Получение и синтез

1. Fe2O3 образуется при прокаливании на воздухе всех гидратов и кислородных соединений железа, а также Fe(NO3)3 и FeSO4. Так, например, прокаливают в течение 2 час. на полном пламени бунзеновской горелки Fe(OH)3, полученный по методу Г. Гюттига и Г. Гарсайда.

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

2. По указанию Д. Н. Финкельштейна 100 г Fe(NO3)3 * 9H2O нагревают в большом фарфоровом тигле на электрической плитке. Вначале соль спокойно плавится, образуя бурую жидкость, постепенно испаряющуюся. При 121° жидкость начинает кипеть, выделяя постоянно кипящую 68%-ную HNO3.

Постепенно жидкость начинает загустевать и необходимо частое перемешивание, чтобы избежать толчков и разбрызгивания. Начиная со 130°, непрерывно перемешивают жидкость фарфоровым шпателем, причем она загустевает, образуя пасту (без перемешивания жидкость внезапно затвердевает в сплошную массу). При 132° паста сразу рассыпается в порошок, продолжая выделять пары HNO 3 .

Не переставая перемешивать, продолжают нагревание до полного высушивания; весь процесс занимает 20--25 мин. Сухую массу растирают, переносят в тигель и прокаливают в муфеле при 600--700° в течение 8--10 час. При достаточной чистоте исходного нитрата железа полученный продукт отвечает квалификации х. ч. Выход 95--98% теоретического, т. е. около 19 г.

3. Для приготовления чистого препарата к нагретому до кипения раствору закисной соли железа прибавляют вычисленное количество горячего раствора щавелевой кислоты, причем выпадает закисное щавелевокислое железо. Его отфильтровывают, тщательно промывают водой, высушивают и прокаливают при доступе воздуха, непрерывно перемешивая. Выход 90--93% теоретического. Получаемый препарат содержит 99,79--99,96% Fe 2 O 3 .

4. В фарфоровый котелок емкостью 4 л, снабженный крышкой, помещают раствор 500 г Fe(NO 3) 3 * 9Н 2 О в 2 л воды. Через трубку, проходящую до дна котелка, пропускают не слишком сильный ток NH 3 , промытого щелочью и водой. Время от времени перемешивают жидкость газоотводящей трубкой.

По окончании осаждения жидкости дают отстояться, раствор декантируют и промывают осадок горячей водой до удаления NO 3 в промывных водах. Отмытый Fe(OH) 3 просушивают в фарфоровых чашках, после чего прокаливают в течение 5--6 час. при 550--600°. Выход 96 г (96--97% теоретического).

5. При получении Fe 2 O 3 , служащего сырьем для приготовления Fe высокой чистоты, исходный нитрат железа должен быть исключительно чист. Путем многократной перекристаллизации Fe(NO 3) 3 * 9Н 2 О Кливс и Томпсон получили препарат, содержащий всего 0,005% Si и менее 0,001% других примесей.

6. По Брандту целесообразнее всего исходить из химически чистого железа. Последнее растворяют в НСl, раствор при нагревании обрабатывают сероводородом, фильтруют и в фильтрате двухвалентное железо окисляют в трехвалентное кипячением с небольшим количеством HNO 3 . Смесь дважды выпаривают с концентрированной HCl и, растворив остаток в избытке разбавленной НСl, несколько раз взбалтывают раствор с эфиром в большой делительной воронке.

Если исходный материал содержал Со, то содержимому воронки дают отстояться, спускают через кран нижний (водный) слой и к оставшейся в воронке эфирной вытяжке прибавляют часть по объему смеси, полученной встряхиванием НСl (уд. в. 1,104) с эфиром. Сильно встряхивают, снова сливают нижний слой и операцию повторяют.

Очищенную эфирную вытяжку фильтруют, эфир отгоняют (или просто удаляют нагреванием на водяной бане), и оставшийся раствор FeCl 3 несколько раз выпаривают с НNО 3 . Последнее выпаривание ведут с добавлением NH 4 NO 3 .

Выпаривание целесообразно проводить в плоской фарфоровой чашке.

После выпаривания остается хрупкая соляная масса, легко отделяющаяся от чашки. Ее истирают в ступке и порциями по 40--50 г умеренно прокаливают в платиновой чашке. Остаток несколько раз смешивают с сухим углекислым аммонием и вновь прокаливают при слабом красном калении, часто перемешивая.

Эту операцию повторяют до приблизительно постоянного веса (точно постоянный вес не может быть достигнут, так как незначительное количество Fe 2 O 3 уносится парами (NH 4) 2 СО 3).

железо металл оксид минерал