Чтобы найти объем нужно. Объем фигур

Все величины указываем в мм

H — Уровень жидкости.

Y — Резервуар в высоту.

L — Длина емкости.

X — Резервуар в ширину.

Данная программа выполняет вычисления объема жидкости в различных по размеру емкостях прямоугольной формы, также поможет рассчитать площадь поверхности резервуара, свободный и общий объем.

По итогам вычисления Вы узнаете:

  • Полную площадь резервуара;
  • Площадь боковой поверхности;
  • Площадь дна;
  • Свободный объем;
  • Количество жидкости;
  • Объем емкости.

Технология расчета количества жидкости в резервуарах разной формы

Когда емкость неправильной геометрической формы (к примеру, в виде пирамиды, параллелепипеда, прямоугольника и т.д.) необходимо в первую очередь выполнить измерения внутренних линейных размеров и только после этого произвести вычисления.

Расчет объема жидкости в прямоугольной емкости небольших размеров, вручную можно выполнить следующим образом. Необходимо залить жидкостью весь резервуар до краев. Тогда объем воды в данном случае станет равен объему резервуара. Далее следует слить аккуратно всю воду в отдельные емкости. К примеру, в специальный резервуар правильной геометрической формы или измеряющий цилиндр. По измерительной шкале Вы сможете визуально определить объем Вашего резервуара. Для расчета количества жидкости в прямоугольной емкости Вам лучше всего воспользоваться нашей онлайн программой, которая быстро и точно выполнить все вычисления.

Если резервуар большого размера, и в ручную невозможно измерить количество жидкости, то можно использовать формулу массы газа с молярной известной массой. К примеру, масса азота М=0,028 кг/моль. Данные вычисления возможны, когда резервуар можно плотно закрыть (герметически). Теперь при помощи термометра измеряем температуру внутри резервуара, и манометром внутреннее давление. Температура должна быть выражена в Кельвинах, а давление в Паскалях. Вычислить объем внутреннего газа можно следующей формуле (V=(m∙R∙T)/(M∙P)). То есть массу газа (m) умножаем на температуру его (Т) и газовую константу (R). Далее полученный результат следует разделить на давление газа (Р) и молярную массу (М). Объем будет выражен в м³.

Как вычислить и узнать объем аквариума по размерам самостоятельно

Аквариумы – стеклянные сосуды, которые заполняют чистой водой до определенного уровня. Многие собственники аквариума неоднократно задумывались, какого объема их резервуар, как можно выполнить вычисления. Самый простой и надежный метод, это воспользоваться рулеткой и замерять все необходимые параметры, которые следует вбить в соответствующие ячейки нашего калькулятора, и Вы сразу же получите готовый результат.

Однако существует и другой способ определения объема аквариума, который заключается в более долгом процессе, использования литровой банки, постепенно заполняя всю емкость до соответствующего уровня.

Третий метод вычисления объема аквариума, это специальная формула. Замеряем глубину резервуара, высоту и ширину в сантиметрах. К примеру, у нас получились следующие параметры: глубина – 50 см, высота – 60 см и ширина – 100 см. Согласно этим размерами, объем аквариума рассчитывается по формуле (V=X*Y*H) или 100х50х60=3000000 см³. Далее нам необходимо полученный результат перевести в литры. Для этого готовое значение умножаем на 0,001. Отсюда следует — 0,001х3000000 сантиметров, и получаем, объем нашего резервуара составит 300 литров. Это мы вычислили полную вместительность емкости, далее необходимо вычислить реальный уровень воды.

Каждый аквариум наполняют значительно ниже, чем его реальная высота, дабы избежать перелива воды, чтобы закрыть крышкой с учетом стяжки. К примеру, когда наш аквариум высотой 60 сантиметров, тогда вклеенные стяжки будут располагаться на 3-5 сантиметров ниже. При нашем размере в 60 сантиметров, чуть менее 10% объема емкости припадает на 5-сантиметровые стяжки. Отсюда мы можем вычислить реальный объем 300 л – 10%=270 л.

Важно! Следует отнять несколько процентов учитывая объем стекол, размеры аквариума или любой другой емкости снимаем с наружной стороны (без учета толщины стекол).

Отсюда объем нашего резервуара будет равен 260 литров.

1. Расчет объема куба

a — сторона куба

Формула объема куба, (V ):

2. Найти по формуле, объем прямоугольного параллелепипеда

a , b , c — стороны параллелепипеда

Еще иногда сторону параллелепипеда, называют ребром.

Формула объема параллелепипеда, (V ):

3. Формула для вычисления объема шара, сферы

R радиус шара

По формуле, если дан радиус, можно найти объема шара, (V ):

4. Как вычислить объем цилиндра?

h — высота цилиндра

r — радиус основания

По формуле найти объема цилиндра, есди известны — его радиус основания и высота, (V ):

5. Как найти объем конуса?

R — радиус основания

H — высота конуса

Формула объема конуса, если известны радиус и высота (V ):

7. Формула объема усеченного конуса

r — радиус верхнего основания

R — радиус нижнего основания

h — высота конуса

Формула объема усеченного конуса, если известны — радиус нижнего основания, радиус верхнего основания и высота конуса (V ):

8. Объем правильного тетраэдра

Правильный тетраэдр — пирамида у которой все грани, равносторонние треугольники.

а — ребро тетраэдра

Формула, для расчета объема правильного тетраэдра (V ):

9. Объем правильной четырехугольной пирамиды

Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула для вычисления объема правильной четырехугольной пирамиды, (V ):

10. Объем правильной треугольной пирамиды

Пирамида, у которой основание равносторонний треугольник и грани равные, равнобедренные треугольники, называется правильной треугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула объема правильной треугольной пирамиды, если даны — высота и сторона основания (V ):

11. Найти объем правильной пирамиды

Пирамида в основании, которой лежит правильный многоугольник и грани равные треугольники, называется правильной.

h — высота пирамиды

a — сторона основания пирамиды

n — количество сторон многоугольника в основании

Формула объема правильной пирамиды, зная высоту, сторону основания и количество этих сторон (V ):

Все формулы объемов геометрических тел
Геометрия, Алгебра, Физика

Формулы объема

Объём геометрической фигуры — количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Формула объема куба

1) Объем куба равен кубу его ребра.

V — объем куба

H — высота ребра куба

Формула объема пирамиды

1) Объем пирамиды равен одной трети произведения площади основания S (ABCD) на высоту h (OS).

V — объем пирамиды

S — площадь основания пирамиды

h — высота пирамиды

Формулы объема конуса

1) Объем конуса равен одной трети произведения площади основания на высоту.

2) Объем конуса равен одной трети произведения числа пи (3.1415) на квадрат радиуса основания на высоту.

V — объем конуса

S — площадь основания конуса

h — высота конуса

π — число пи (3.1415)

r — радиус конуса

Формулы объема цилиндра

1) Объем цилиндра равен произведению площади основания на высоту.

2) Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

V — объем цилиндра

S — площадь основания цилиндра

h — высота цилиндра

π — число пи (3.1415)

r — радиус цилиндра

Формула объема шара

1) Объем шара вычисляется по приведенной ниже формуле.

V — объем шара

π — число пи (3.1415)

R — радиус шара

Формула объема тетраэдра

1) Объем тетраэдра равен дроби в числителе которой корень квадратный из двух помноженный на куб длины ребра тетраэдра, а в знаменателе двенадцать.

Формулы объема
Формулы объема и онлайн программы для вычисления объема


Формула объема.

Формула объема необходима для вычисления параметров и характеристик геометрической фигуры.

Объем фигуры — это количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Параллелепипед .

Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

Цилиндр .

Объем цилиндра равен произведению площади основания на высоту.

Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

Пирамида .

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).

Правильная пирамида - это пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.

Правильная треугольная пирамида - это пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.

Правильная четырехугольная пирамида - это пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.

Тетраэдр - это пирамида, у которой все грани - равносторонние треугольники.

Усеченная пирамида .

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S 1 (abcde), нижнего основания усеченной пирамиды S 2 (ABCDE) и средней пропорциональной между ними.

Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна ширине и равна высоте, то объем куба равен s 3 .

Конус - это тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.

Усеченный конус получится, если в конусе провести сечение, параллельное основанию.

V = 1/3 πh (R 2 + Rr + r 2)

Объем шара в полтора раза меньше, чем объем описанного вокруг него цилиндра.

Призма .

Объем призмы равен произведению площади основания призмы, на высоту.

Сектор шара .

Объем шарового сектора равен объему пирамиды, основание которой имеет ту же площадь, что и вырезаемая сектором часть шаровой поверхности, а высота равна радиусу шара.

Шаровой слой - это часть шара, заключенная между двумя секущими параллельными плоскостями.

Сегмент шара — это часть шара, осекаемая от него какой-нибудь плоскостью, называется шаровым или сферическим сегментом

Формула объема
Формула объема куба, шара, пирамиды, параллелограмма, цилиндра, тетраэдра, конуса, призмы и объемы других геометрических фигур.


В курсе стереометрии один из главных вопросов — как рассчитать объем того или иного геометрического тела. Все начинается с простого параллелепипеда и заканчивается шаром.

В жизни тоже часто приходится сталкиваться с подобными задачами. Например, чтобы рассчитать объем воды, которая помещается в ведро или бочку.

Свойства, справедливые для объема каждого тела

  1. Это значение — всегда положительное число.
  2. Если тело удается разделить на части так, чтобы не было пересечений, то общий объем оказывается равным сумме объемов частей.
  3. У равных тел одинаковые объемы.
  4. Если меньшее тело полностью помещается в большем, то объем первого меньше, чем второго.

Общие обозначения для всех тел

В каждом из них есть ребра и основания, в них строятся высоты. Поэтому такие элементы для них одинаково обозначены. Именно так они записаны в формулах. Как рассчитать объем каждого из тел — узнаем дальше и применим на практике новые умения.

В некоторых формулах имеются другие величины. Об их обозначении будет сказано при появлении такой необходимости.

Призма, параллелепипед (прямой и наклонный) и куб

Эти тела объединены, потому что внешне очень похожи, и формулы того, как рассчитать объем, идентичны:

V = S * h.

Различаться будет только S . В случае с параллелепипедом она рассчитывается, как для прямоугольника или квадрата. В призме основанием может оказаться треугольник, параллелограмм, произвольный четырехугольник или другой многоугольник.

Для куба формула существенно упрощается, потому что все его измерения равны:

V = а 3 .

Пирамида, тетраэдр, усеченная пирамида

Для первого из указанных тел существует такая формула, чтобы вычислить объем:

V = 1/3 * S * н.

Тетраэдр является частным случаем треугольной пирамиды. В нем все ребра равны. Поэтому снова получается упрощенная формула:

V = (а 3 * √2) / 12, или V = 1/ 3 S h

Усеченной пирамида становится тогда, когда у нее срезана верхняя часть. Поэтому ее объем равен разности двух пирамид: той, которая была бы целой, и удаленной верхушки. Если есть возможность узнать оба основания такой пирамиды (S 1 - большее и S 2 - меньшее), то удобно пользоваться такой формулой для расчета объема:

Цилиндр, конус и усеченный конус

V =π * r 2 * h.

Несколько сложнее обстоит дело с конусом. Для него существует формула:

V = 1/3 π * r 2 * h. Она очень похожа на ту, что указана для цилиндра, только значение уменьшено в три раза.

Так же, как с усеченной пирамидой, дело обстоит непросто с конусом, который имеет два основания. Формула для вычисления объема усеченного конуса выглядит так:

V = 1/3 π * h * (r 1 2 + r 1 r 2 + r 2 2). Здесь r 1 - радиус нижнего основания, r 2 - верхнего (меньшего).

Шар, шаровые сегменты и сектор

Это самые сложные для запоминания формулы. Для объема шара она выглядит так:

V = 4/3 π *r 3 .

В задачах часто есть вопрос о том, как рассчитать объем шарового сегмента - части сферы, которая как бы срезана параллельно диаметру. В этом случае на выручку придет такая формула:

V = π h 2 * (r — h/3). В ней за h взята высота сегмента, то есть та часть, которая идет по радиусу шара.

Сектор делится на две части: конус и шаровой сегмент. Поэтому его объем определяется как сумма этих тел. Формула после преобразований выглядит так:

V = 2/3 πr 2 * h. Здесь h также высота сегмента.

Примеры задач

Про объемы цилиндра, шара и конуса

Условие: диаметр цилиндра (1 тело) равен его высоте, диаметру шара (2 тело) и высоте конуса (3 тело), проверить пропорциональность объемов V 1: V 2: V 3 = 3:2:1

Решение. Сначала потребуется записать три формулы для объемов. Потом учесть, что радиус - это половина диаметра. То есть высота будет равна двум радиусам: h = 2r. Произведя простую замену получается, что формулы для объемов будут иметь такой вид:

V 1 = 2 π r 3 , V 3 = 2/3 π r 3 . Формула для объема шара не изменяется, потому что в ней не фигурирует высота.

Теперь осталось записать отношения объемов и произвести сокращение 2π и r 3 . Получается, что V 1: V 2: V 3 = 1: 2/3: 1/3. Эти числа легко привести к записи 3: 2: 1.

Про объем шара

Условие: имеется два арбуза радиусами 15 и 20 см, как их выгоднее съесть: первый вчетвером или второй ввосьмером?

Решение. Чтобы ответить на этот вопрос, потребуется найти отношение объемов частей, которые достанутся от каждого арбуза. Принимая во внимание, что они - шары, нужно записать две формулы для объемов. Потом учесть, что от первого каждому достанется только четвертая часть, а от второго — восьмая.

Осталось записать отношение объемов частей. Оно будет выглядеть так:

(V 1: 4) / (V 2: 8) = (1/3 π r 1 3) / (1/6 π r 2 3). После преобразования остается только дробь: (2 r 1 3) / r 2 3 . После подстановки значений и вычисления получается дробь 6750/8000. Из нее ясно, что часть от первого арбуза будет меньше, чем от второго.

Ответ. Выгоднее съесть восьмую часть от арбуза с радиусом 20 см.

Про объемы пирамиды и куба

Условие: имеется пирамида из глины с прямоугольным основанием 8Х9 см и высотой 9 см, из этого же куска глины сделали куб, чему равно его ребро?

Решение. Если обозначить стороны прямоугольника буквами в и с, то площадь основания пирамиды вычисляется, как их произведение. Тогда формула для ее объема:

Формула для объема куба написана в статье выше. Эти два значения равны: V 1 = V 2 . Осталось приравнять правые части формул и сделать необходимые вычисления. Получается, что ребро куба будет равно 6 см.

Про объем параллелепипеда

Условие: требуется сделать ящик вместимостью 0,96 м 3 , известны его ширина и длина — 1,2 и 0,8 метра, какой должна быть его высота?

Решение. Поскольку основание параллелепипеда — прямоугольник, его площадь определяется как произведение длины (а) на ширину (в). Поэтому формула для объема выглядит так:

Из нее легко определить высоту, разделив объем на площадь. Получится, что высота должна быть равна 1 м.

Ответ. Высота ящика равна одному метру.

Как рассчитать объем различных геометрических тел?
В курсе стереометрии одна из главных задач — как рассчитать объем того или иного геометрического тела. Все начинается с простого параллелепипеда и заканчивается шаром.

Для простых тел объем - это положительная величина, численное значение которой обладает следующими свойствами:

1. Равные тела имеют равные объемы.

2. Если тело разбито на части, являющиеся простыми телами, то объем этого тела равен сумме объемов его частей.

3. Объем куба, ребро которого равно единице длины, равен единице.

Если куб, о котором идет речь в определении, имеет ребро 1 см, то объем измеряется в кубических сантиметрах; если ребро куба равно , то объем измеряется в кубических

метрах; если ребро куба равно 1 км, то объем измеряется в кубических километрах и т. д.

На рисунке 181 изображено простое тело - четырехугольная пирамида SABCD. Объем этой пирамиды на основании свойства 2 равен сумме объемов пирамид SABC и SADC.

59. Объем параллелепипеда, призмы и пирамиды.

Объем прямоугольного параллелепипеда находится по формуле

где - ребра прямоугольного параллелепипеда. Исходя из этой формулы можно получить формулу для объема куба. Объем куба находят по формуле

где а - ребро куба.

Иногда говорят, что объем прямоугольного параллелепипеда равен произведению его линейных размеров или произведению площади его основания на высоту. Последнее утверждение верно и для любого параллелепипеда.

На рисунке 182 изображен наклонный параллелепипед. Его объем равен , где - площадь основания, а высота наклонного параллелепипеда.

Можно вывести правило нахождения объема любой призмы (в том числе и наклонной).

Объем призмы равен произведению площади ее основания на высоту;

В случае прямой призмы (рис. 183) высота ее совпадает с боковым ребром и объем прямой призмы равен произведению площади основания на боковое ребро.

Объем любой пирамиды находится по формуле

где S - площадь основания, Н - высота пирамиды.

На рисунке 184 изображен правильный тетраэдр SABC с ребром а. Его объем равен

Пример. В наклонном параллелепипеде основание и боковая грань - прямоугольники, площади которых соответственно равны а угол между их плоскостями равен 80°. Одна боковых граней параллелепипеда имеет площадь Найти объем параллелепипеда.

Решение. Пусть в параллелепипеде грани прямоугольники. Тогда ребро AD перпендикулярно грани Дальнейшие вычисления можно выполнить, не находя длин этих отрезков. Имеем Перемножив эти равенства почленно, получим откуда

60. Объем цилиндра и конуса.

Объем любого тела определяется следующим образом. Данное тело нмеет объем V, если существуют содержащие его простые тела и содержащиеся в нем простые тела с объемами, сколь угодно мало отличающимися от V.

Применив это определение к нахождению объемов цилиндра и конуса, можно доказать теоремы.

Объем цилиндра равен произведению площади основания на высоту, т. е.

Если радиус основания цилиндра R, а высота H, то формула его объема такова:

Объем конуса равен одной трети произведения площади основания на высоту» т. е. .

Если радиус основания конуса H, а высота II, то объем его находится по формуле

Объем усеченного конуса можно найти по формуле

где радиусы оснований, Н - высота усеченного конуса. Объем усеченного конуса, изображенного на рисунке 185, находится по формуле

61. Общая формула объемов тел вращения.

Объем шара и его частей. Для вывода формулы объема тела вращения вводят декартовы координаты в пространстве, приняв ось тела за ось Плоскость пересекает поверхность тела по линии, для которой ось х является осью симметрии. Пусть уравнение той части линии, которая расположена над осью х (рис. 186).

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Так же, как у плоских фигур кроме длины и ширины есть такая характеристика, как площадь, у объемных тел есть… объем. И так же как рассуждения о площади начинаются с квадрата, сейчас мы начнем с куба.

Объем куба с ребром метр равен кубическому метру.

Помнишь, квадратный метр - это была площадь квадрата и обозначалась она м.кв. Ну вот, а объем куба с ребром называется кубическим метром и обозначается м.кв.

Что же такое м.кв.? А вот, смотри:

Это два кубика с ребром.

А чему равен объем куба с ребром?

Сколько в большом кубе (с ребром) маленьких (с ребром)?

Конечно, . Поэтому объем куба с ребром равен кубическим метрам, то есть м.кв. А ведь это.

И представь себе, это для любого куба, даже с ребром верна формула.

Площадь основания

Эта формула верна для любой призмы, но если призма прямая, то «превращается» в боковое ребро. И тогда

То же самое, что

Необычная формула объёма призмы

Представь себе, есть ещё одна, «перевёрнутая» формула для объёма призмы.

Площадь сечения, перпендикулярного боковому ребру,

Длина бокового ребра.

Используется ли эта формула в задачах? Честно говоря, довольно редко, так что можешь ограничиться знанием основной формулы объёма.

Главная формула объема пирамиды:

Откуда взялась именно? Это не так уж просто, и на первых порах нужно просто запомнить, что у пирамиды и конуса в формуле объема есть, а у пирамиды и цилиндра - нет.

Теперь давай посчитаем объем самых популярных пирамид.

Объем правильной треугольной пирамиды

Пусть сторона основания равна, а боковое ребро равно. Нужно найти и.

Это площадь правильного треугольника.

Вспомним, как искать эту площадь. Используем формулу площади:

У нас « » - это, а « » - это тоже, а.

Теперь найдем.

По теореме Пифагора для

Чему же равно? Это радиус описанной окружности в, потому что пирамида правильная и, значит, - центр.

Так как - точка пересечения и медиан тоже.

(теорема Пифагора для)

Подставим в формулу для.

И подставим все в формулу объема:

Внимание: если у тебя правильный тетраэдр (т.е.), то формула получается такой:

Объем правильной четырехугольной пирамиды

Пусть сторона основания равна, а боковое ребро равно.

Здесь и искать не нужно; ведь в основании - квадрат, и поэтому.

Найдем. По теореме Пифагора для

Известно ли нам? Ну, почти. Смотри:

(это мы увидели, рассмотрев).

Подставляем в формулу для:

А теперь и и подставляем в формулу объема.

Объем правильной шестиугольной пирамиды.

Пусть сторона основания равна, а боковое ребро.

Как найти? Смотри, шестиугольник состоит ровно из шести одинаковых правильных треугольников. Площадь правильного треугольника мы уже искали при подсчете объема правильной треугольной пирамиды, здесь используем найденную формулу.

Теперь найдем (это).

По теореме Пифагора для

Но чему же равно? Это просто, потому что (и все остальные тоже) правильный.

Подставляем:

Тела вращения. Формула объема

Объем шара

Это еще одна хитрая формула, которую придется запомнить, не понимая, откуда она взялась.

Объем цилиндра

Объем конуса

ОБЪЕМ. КОРОТКО О ГЛАВНОМ

Объем цилиндра

Радиус основания

Объем конуса

Радиус основания

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!